Baccus Stephen A
Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305, USA.
Annu Rev Physiol. 2007;69:271-90. doi: 10.1146/annurev.physiol.69.120205.124451.
In the vertebrate inner retina, the second stage of the visual system, different components of the visual scene are transformed, discarded, or selected before visual information is transmitted through the optic nerve. This review discusses the connections between higher-level functions of visual processing, mathematical descriptions of the neural code, inner retinal circuitry, and visual computations. In the inner plexiform layer, bipolar cells deliver spatially and temporally filtered input to approximately ten anatomical strata. These layers receive a unique combination of excitation and inhibition, causing cells in different layers to respond with different kinetics to visual input. These distinct temporal channels interact through amacrine cells, a diverse class of inhibitory interneurons, which transmit signals within and between layers. In particular, wide-field amacrine cells transmit transient inhibition over long distances within a layer. These mechanisms and properties are combined into computations to detect the presence of differential motion and suppress the visual effects of eye movements.
在脊椎动物的视网膜内层(视觉系统的第二阶段),视觉场景的不同成分在视觉信息通过视神经传输之前会被转换、舍弃或选择。本综述讨论了视觉处理的高级功能、神经编码的数学描述、视网膜内层电路和视觉计算之间的联系。在内网状层,双极细胞将经过空间和时间滤波的输入传递到大约十个解剖层面。这些层面接收独特的兴奋和抑制组合,导致不同层面的细胞对视觉输入以不同的动力学方式做出反应。这些不同的时间通道通过无长突细胞相互作用,无长突细胞是一类多样的抑制性中间神经元,它们在层内和层间传递信号。特别是,广域无长突细胞在一层内远距离传递瞬时抑制。这些机制和特性被组合到计算中,以检测差异运动的存在并抑制眼球运动的视觉效果。