Departments of Neurosurgery and Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, USA; email:
Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA.
Annu Rev Neurosci. 2019 Jul 8;42:169-186. doi: 10.1146/annurev-neuro-070918-050233. Epub 2019 Mar 11.
Daylight vision begins when light activates cone photoreceptors in the retina, creating spatial patterns of neural activity. These cone signals are then combined and processed in downstream neural circuits, ultimately producing visual perception. Recent technical advances have made it possible to deliver visual stimuli to the retina that probe this processing by the visual system at its elementary resolution of individual cones. Physiological recordings from nonhuman primate retinas reveal the spatial organization of cone signals in retinal ganglion cells, including how signals from cones of different types are combined to support both spatial and color vision. Psychophysical experiments with human subjects characterize the visual sensations evoked by stimulating a single cone, including the perception of color. Future combined physiological and psychophysical experiments focusing on probing the elementary visual inputs are likely to clarify how neural processing generates our perception of the visual world.
当光线激活视网膜中的视锥感光细胞,产生神经活动的空间模式时,日光视觉就开始了。这些视锥信号随后在下游神经回路中进行组合和处理,最终产生视觉感知。最近的技术进步使得向视网膜提供视觉刺激成为可能,这些刺激以视觉系统的单个视锥的基本分辨率来探测处理过程。对非人类灵长类动物视网膜的生理记录揭示了视锥信号在视网膜神经节细胞中的空间组织,包括不同类型的视锥信号如何组合来支持空间和颜色视觉。用人类受试者进行的心理物理学实验描述了刺激单个视锥所引起的视觉感觉,包括对颜色的感知。未来聚焦于探测基本视觉输入的生理和心理物理学联合实验,很可能阐明神经处理如何产生我们对视觉世界的感知。