Suppr超能文献

使用不可逆进化模型进行高效似然计算。

Efficient likelihood computations with nonreversible models of evolution.

作者信息

Boussau Bastien, Gouy Manolo

机构信息

Laboratoire de Biométrie et Biologie Evolutive (UMR 5558); CNRS, Université Lyon 1, Villeurbanne Cedex, France.

出版信息

Syst Biol. 2006 Oct;55(5):756-68. doi: 10.1080/10635150600975218.

Abstract

Recent advances in heuristics have made maximum likelihood phylogenetic tree estimation tractable for hundreds of sequences. Noticeably, these algorithms are currently limited to reversible models of evolution, in which Felsenstein's pulley principle applies. In this paper we show that by reorganizing the way likelihood is computed, one can efficiently compute the likelihood of a tree from any of its nodes with a nonreversible model of DNA sequence evolution, and hence benefit from cutting-edge heuristics. This computational trick can be used with reversible models of evolution without any extra cost. We then introduce nhPhyML, the adaptation of the nonhomogeneous nonstationary model of Galtier and Gouy (1998; Mol. Biol. Evol. 15:871-879) to the structure of PhyML, as well as an approximation of the model in which the set of equilibrium frequencies is limited. This new version shows good results both in terms of exploration of the space of tree topologies and ancestral G+C content estimation. We eventually apply it to rRNA sequences slowly evolving sites and conclude that the model and a wider taxonomic sampling still do not plead for a hyperthermophilic last universal common ancestor.

摘要

启发式算法的最新进展使得对数百个序列进行最大似然系统发育树估计变得可行。值得注意的是,这些算法目前仅限于适用费尔斯滕森滑轮原理的可逆进化模型。在本文中,我们表明,通过重新组织计算似然性的方式,人们可以使用DNA序列进化的非可逆模型从树的任何节点高效地计算树的似然性,从而受益于前沿的启发式算法。这种计算技巧可用于可逆进化模型,且无需任何额外成本。然后,我们引入了nhPhyML,即将加尔捷和古伊(1998年;《分子生物学与进化》15:871 - 879)的非齐次非平稳模型适配到PhyML的结构,以及一种平衡频率集受限的模型近似。这个新版本在树形拓扑结构探索和祖先G + C含量估计方面都显示出了良好的结果。我们最终将其应用于rRNA序列缓慢进化的位点,并得出结论,该模型和更广泛的分类抽样仍然不支持超嗜热的最后普遍共同祖先。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验