Al-Bataineh Osama M, Collins Christopher M, Park Eun-Joo, Lee Hotaik, Smith Nadine Barrie
Department of Bioengineering, The Pennsylvania State University, University Park, PA 16802, USA.
Biomed Eng Online. 2006 Oct 25;5:56. doi: 10.1186/1475-925X-5-56.
Ultrasound induced hyperthermia is a useful adjuvant to radiation therapy in the treatment of prostate cancer. A uniform thermal dose (43 degrees C for 30 minutes) is required within the targeted cancerous volume for effective therapy. This requires specific ultrasound phased array design and appropriate thermometry method. Inhomogeneous, acoustical, three-dimensional (3D) prostate models and economical computational methods provide necessary tools to predict the appropriate shape of hyperthermia phased arrays for better focusing. This research utilizes the k-space computational method and a 3D human prostate model to design an intracavitary ultrasound probe for hyperthermia treatment of prostate cancer. Evaluation of the probe includes ex vivo and in vivo controlled hyperthermia experiments using the noninvasive magnetic resonance imaging (MRI) thermometry.
A 3D acoustical prostate model was created using photographic data from the Visible Human Project. The k-space computational method was used on this coarse grid and inhomogeneous tissue model to simulate the steady state pressure wavefield of the designed phased array using the linear acoustic wave equation. To ensure the uniformity and spread of the pressure in the length of the array, and the focusing capability in the width of the array, the equally-sized elements of the 4 x 20 elements phased array were 1 x 14 mm. A probe was constructed according to the design in simulation using lead zerconate titanate (PZT-8) ceramic and a Delrin plastic housing. Noninvasive MRI thermometry and a switching feedback controller were used to accomplish ex vivo and in vivo hyperthermia evaluations of the probe.
Both exposimetry and k-space simulation results demonstrated acceptable agreement within 9%. With a desired temperature plateau of 43.0 degrees C, ex vivo and in vivo controlled hyperthermia experiments showed that the MRI temperature at the steady state was 42.9 +/- 0.38 degrees C and 43.1 +/- 0.80 degrees C, respectively, for 20 minutes of heating.
Unlike conventional computational methods, the k-space method provides a powerful tool to predict pressure wavefield in large scale, 3D, inhomogeneous and coarse grid tissue models. Noninvasive MRI thermometry supports the efficacy of this probe and the feedback controller in an in vivo hyperthermia treatment of canine prostate.
超声诱导热疗是前列腺癌放射治疗中一种有用的辅助治疗方法。为实现有效治疗,目标癌组织体积内需要均匀的热剂量(43摄氏度,持续30分钟)。这需要特定的超声相控阵设计和合适的测温方法。非均匀、声学三维(3D)前列腺模型和经济的计算方法为预测热疗相控阵的合适形状以实现更好聚焦提供了必要工具。本研究利用k空间计算方法和3D人体前列腺模型设计用于前列腺癌热疗的腔内超声探头。对该探头的评估包括使用无创磁共振成像(MRI)测温法进行的离体和体内控制热疗实验。
利用可视人计划的摄影数据创建3D声学前列腺模型。在这个粗网格和非均匀组织模型上使用k空间计算方法,通过线性声波方程模拟设计的相控阵的稳态压力波场。为确保阵列长度上压力的均匀性和分布,以及阵列宽度上的聚焦能力,4×20阵元相控阵中尺寸相同的阵元为1×14毫米。根据模拟设计,使用锆钛酸铅(PZT - 8)陶瓷和聚甲醛塑料外壳构建了一个探头。使用无创MRI测温法和切换反馈控制器对探头进行离体和体内热疗评估。
剂量测定和k空间模拟结果显示,两者在9%以内具有可接受的一致性。在期望的温度平台为43.0摄氏度的情况下,离体和体内控制热疗实验表明,加热20分钟时,稳态下MRI温度分别为42.9±0.38摄氏度和43.1±0.80摄氏度。
与传统计算方法不同,k空间方法为在大规模、3D、非均匀和粗网格组织模型中预测压力波场提供了强大工具。无创MRI测温法支持该探头和反馈控制器在犬前列腺体内热疗中的有效性。