Suppr超能文献

基于混合域方法的弱非均匀介质中超声波传播的数值建模。

Numerical Modeling of Ultrasound Propagation in Weakly Heterogeneous Media Using a Mixed-Domain Method.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Jul;65(7):1258-1267. doi: 10.1109/TUFFC.2018.2828316.

Abstract

A mixed-domain method (MDM) is presented in this paper for modeling one-way linear/nonlinear wave propagation in biological tissue with arbitrary heterogeneities, in which sound speed, density, attenuation coefficients, and nonlinear coefficients are all spatial varying functions. The present method is based on solving an integral equation derived from a Westervelt-like equation. One-dimensional problems are first studied to verify the MDM and to reveal its limitations. It is shown that this method is accurate for cases with small variation of sound speed. A 2-D case is further studied with focused ultrasound beams to validate the application of the method in the medical field. Results from the MATLAB toolbox k-Wave are used as the benchmark. Normalized root-mean-square (rms) error estimated at the focus of the transducer is 0.0133 when the coarsest mesh (1/3 of the wavelength) is used in the MDM. Fundamental and second-harmonic fields throughout the considered computational domains are compared and good agreement is observed. Overall, this paper demonstrates that the MDM is a computationally efficient and accurate method when used to model wave propagation in biological tissue with relatively weak heterogeneities.

摘要

本文提出了一种混合域方法(MDM),用于模拟具有任意非均匀性的生物组织中单向线性/非线性波的传播,其中声速、密度、衰减系数和非线性系数都是空间变化的函数。本方法基于求解从 Westervelt 类方程推导出的积分方程。首先研究一维问题以验证 MDM 并揭示其局限性。结果表明,对于声速变化较小的情况,该方法是准确的。进一步研究了二维情况,使用聚焦超声束验证该方法在医学领域的应用。MATLAB 工具包 k-Wave 的结果用作基准。当在 MDM 中使用最粗的网格(波长的 1/3)时,在换能器焦点处估计的归一化均方根(rms)误差为 0.0133。在所考虑的计算域中比较了基波和二次谐波场,观察到很好的一致性。总体而言,本文表明,当用于模拟具有相对较弱非均匀性的生物组织中的波传播时,MDM 是一种计算效率高且准确的方法。

相似文献

1
Numerical Modeling of Ultrasound Propagation in Weakly Heterogeneous Media Using a Mixed-Domain Method.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Jul;65(7):1258-1267. doi: 10.1109/TUFFC.2018.2828316.
2
Simulation of the Second-Harmonic Ultrasound Field in Heterogeneous Soft Tissue Using a Mixed-Domain Method.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Apr;66(4):669-675. doi: 10.1109/TUFFC.2019.2892753. Epub 2019 Jan 14.
3
mSOUND: An Open Source Toolbox for Modeling Acoustic Wave Propagation in Heterogeneous Media.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 May;68(5):1476-1486. doi: 10.1109/TUFFC.2021.3051729. Epub 2021 Apr 26.
4
A heterogeneous nonlinear attenuating full-wave model of ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Mar;56(3):474-88. doi: 10.1109/TUFFC.2009.1066.
5
Modeling of finite-amplitude sound beams: second order fields generated by a parametric loudspeaker.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Apr;52(4):610-8. doi: 10.1109/tuffc.2005.1428044.
6
Computation of nonlinear ultrasound fields using a linearized contrast source method.
J Acoust Soc Am. 2013 Aug;134(2):1442-53. doi: 10.1121/1.4812863.
7
Transmit beamforming for optimal second-harmonic generation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Aug;58(8):1559-69. doi: 10.1109/TUFFC.2011.1983.
8
Fundamental and second-harmonic ultrasound field computation of inhomogeneous nonlinear medium with a generalized angular spectrum method.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jul;58(7):1366-76. doi: 10.1109/TUFFC.2011.1956.
9
Sources of image degradation in fundamental and harmonic ultrasound imaging: a nonlinear, full-wave, simulation study.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jun;58(6):1272-83. doi: 10.1109/TUFFC.2011.1938.
10

引用本文的文献

1
Model-based navigation of transcranial focused ultrasound neuromodulation in humans: Application to targeting the amygdala and thalamus.
Brain Stimul. 2024 Jul-Aug;17(4):958-969. doi: 10.1016/j.brs.2024.07.019. Epub 2024 Jul 31.
2
High-resolution acoustic mapping of tunable gelatin-based phantoms for ultrasound tissue characterization.
Front Bioeng Biotechnol. 2024 Feb 22;12:1276143. doi: 10.3389/fbioe.2024.1276143. eCollection 2024.
3
Time-Resolved Passive Cavitation Mapping Using the Transient Angular Spectrum Approach.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2361-2369. doi: 10.1109/TUFFC.2021.3062357. Epub 2021 Jun 29.
4
mSOUND: An Open Source Toolbox for Modeling Acoustic Wave Propagation in Heterogeneous Media.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 May;68(5):1476-1486. doi: 10.1109/TUFFC.2021.3051729. Epub 2021 Apr 26.
6
Spherical Array System for High-Precision Transcranial Ultrasound Stimulation and Optoacoustic Imaging in Rodents.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jan;68(1):107-115. doi: 10.1109/TUFFC.2020.2994877. Epub 2020 Dec 23.
7
Heterogeneous Angular Spectrum Method for Trans-Skull Imaging and Focusing.
IEEE Trans Med Imaging. 2020 May;39(5):1605-1614. doi: 10.1109/TMI.2019.2953872. Epub 2019 Nov 15.
8
Simulation of the Second-Harmonic Ultrasound Field in Heterogeneous Soft Tissue Using a Mixed-Domain Method.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Apr;66(4):669-675. doi: 10.1109/TUFFC.2019.2892753. Epub 2019 Jan 14.

本文引用的文献

1
Design of HIFU transducers to generate specific nonlinear ultrasound fields.
Phys Procedia. 2016;87:132-138. doi: 10.1016/j.phpro.2016.12.020.
4
Modeling of wave propagation for medical ultrasound: a review.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Nov;62(11):1979-93. doi: 10.1109/TUFFC.2015.007034.
5
Frequency domain ultrasound waveform tomography: breast imaging using a ring transducer.
Phys Med Biol. 2015 Jul 21;60(14):5381-98. doi: 10.1088/0031-9155/60/14/5381. Epub 2015 Jun 25.
6
Waveform inversion with source encoding for breast sound speed reconstruction in ultrasound computed tomography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Mar;62(3):475-93. doi: 10.1109/TUFFC.2014.006788.
7
Characterization of a multi-element clinical HIFU system using acoustic holography and nonlinear modeling.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Aug;60(8):1683-98. doi: 10.1109/TUFFC.2013.2750.
8
An improved wave-vector frequency-domain method for nonlinear wave modeling.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Mar;61(3):515-24. doi: 10.1109/TUFFC.2014.2935.
9
CREANUIS: a non-linear radiofrequency ultrasound image simulator.
Ultrasound Med Biol. 2013 Oct;39(10):1915-24. doi: 10.1016/j.ultrasmedbio.2013.04.005. Epub 2013 Jul 13.
10
A k-space method for moderately nonlinear wave propagation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Aug;59(8):1664-73. doi: 10.1109/TUFFC.2012.2372.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验