Suppr超能文献

基于微电极阵列的系统,用于体外培养皮层神经元的神经药理学应用。

Microelectrode array-based system for neuropharmacological applications with cortical neurons cultured in vitro.

作者信息

Xiang Guangxin, Pan Liangbin, Huang Lihua, Yu Zhongyao, Song Xindong, Cheng Jing, Xing Wanli, Zhou Yuxiang

机构信息

Medical Systems Biology Research Center, Tsinghua University, Beijing 100084, China.

出版信息

Biosens Bioelectron. 2007 May 15;22(11):2478-84. doi: 10.1016/j.bios.2006.09.026. Epub 2006 Oct 30.

Abstract

Microelectrode arrays (MEAs) provide a means to investigate the electrophysiological behavior of neuronal systems through the measurements from neuronal culture preparations. Changes in activity patterns of neuronal networks are usually detected by applying neural chemicals. Because of the difficulties of fabricating the arrays, and the delicate and less reliable properties of cortical neurons, MEA-based systems with cortical neuronal networks for neurophamacological applications are technically difficult, therefore restricting their utility. Here, we report a new approach to the development of such MEA-based system with sensitive and durable MEAs conveniently fabricated and the culture conditions optimized. Upon growth differentiation, cortical neurons, cultured directly on MEAs, reach a developmentally stable and reliable activity state. With this system, we monitored the global spontaneous activities of neuronal networks and demonstrated the fine discrimination for specific substances and unique property of cortical neurons, which validated both the applicability and necessity of such system in pharmacological bioassay.

摘要

微电极阵列(MEA)提供了一种通过对神经元培养制剂进行测量来研究神经元系统电生理行为的方法。神经网络活动模式的变化通常通过应用神经化学物质来检测。由于制造阵列存在困难,以及皮质神经元的脆弱性和较低的可靠性,用于神经药理学应用的基于MEA且带有皮质神经网络的系统在技术上具有挑战性,因此限制了它们的实用性。在此,我们报告了一种开发此类基于MEA的系统的新方法,该系统具有方便制造的灵敏且耐用的MEA,并优化了培养条件。在生长分化后,直接培养在MEA上的皮质神经元达到发育稳定且可靠的活动状态。利用该系统,我们监测了神经网络的整体自发活动,并证明了对特定物质的精细辨别以及皮质神经元的独特特性,这验证了该系统在药理学生物测定中的适用性和必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验