Makarona Eleni, Peter Beatrix, Szekacs Inna, Tsamis Christos, Horvath Robert
Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, Athens 153 10, Greece.
Nanobiosensorics Momentum Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest 1121, Hungary.
Materials (Basel). 2016 Mar 31;9(4):256. doi: 10.3390/ma9040256.
The development of artificial surfaces which can regulate or trigger specific functions of living cells, and which are capable of inducing -like cell behaviors under conditions has been a long-sought goal over the past twenty years. In this work, an alternative, facile and cost-efficient method for mass-producible cellular templates is presented. The proposed methodology consists of a cost-efficient, two-step, all-wet technique capable of producing ZnO-based nanostructures on predefined patterns on a variety of substrates. ZnO-apart from the fact that it is a biocompatible material-was chosen because of its multifunctional nature which has rendered it a versatile material employed in a wide range of applications. Si, Si₃N₄, emulated microelectrode arrays and conventional glass cover slips were patterned at the micrometer scale and the patterns were filled with ZnO nanostructures. Using HeLa cells, we demonstrated that the fabricated nanotopographical features could promote guided cellular adhesion on the pre-defined micron-scale patterns only through nanomechanical cues without the need for further surface activation or modification. The basic steps of the micro/nanofabrication are presented and the results from the cell adhesion experiments are discussed, showing the potential of the suggested methodology for creating low-cost templates for engineered cellular networks.
在过去二十年里,开发能够调节或触发活细胞特定功能、并能在特定条件下诱导类似细胞行为的人工表面一直是人们长期追求的目标。在这项工作中,提出了一种用于大规模生产细胞模板的替代方法,该方法简便且成本效益高。所提出的方法包括一种成本效益高的两步全湿技术,能够在各种基板上的预定义图案上制备基于氧化锌的纳米结构。选择氧化锌——除了它是一种生物相容性材料这一事实之外——是因为它具有多功能性质,这使其成为一种广泛应用于各种领域的通用材料。硅、氮化硅、模拟微电极阵列和传统玻璃盖玻片在微米尺度上进行了图案化处理,并且图案中填充了氧化锌纳米结构。使用HeLa细胞,我们证明了所制造的纳米拓扑特征仅通过纳米机械线索就能促进细胞在预定义的微米尺度图案上的定向粘附,而无需进一步的表面活化或修饰。本文介绍了微纳制造的基本步骤,并讨论了细胞粘附实验的结果,展示了所建议方法在创建用于工程细胞网络的低成本模板方面的潜力。