Veldkamp Christopher T, Peterson Francis C, Hayes Paulette L, Mattmiller Jessie E, Haugner John C, de la Cruz Norberto, Volkman Brian F
Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
Protein Expr Purif. 2007 Mar;52(1):202-9. doi: 10.1016/j.pep.2006.09.009. Epub 2006 Sep 24.
We have applied an efficient solid-phase protein refolding method to the milligram scale production of natively folded recombinant chemokine proteins. Chemokines are intensely studied proteins because of their roles in immune system regulation, response to inflammation, fetal development, and numerous disease states including, but not limited to, HIV-1/AIDS, cancer metastasis, Crohn's disease, asthma and arthritis. Many investigators use recombinant chemokines for research purposes, however these proteins partition almost exclusively to the inclusion body fraction when produced in Escherichia coli. A major hurdle is to correctly refold the chemokine and oxidize the two highly conserved disulfide bonds found in nearly all chemokines. Conventional methods for oxidation and refolding by dialysis or extreme dilution are effective but slow and yield large volumes of dilute chemokine. Here we use an on-column approach for rapid refolding and oxidation of four chemokines, CXCL12/SDF-1alpha (stromal cell-derived factor-1alpha), CCL5/RANTES, XCL1/lymphotactin, and CX3CL1/fractalkine. NMR spectra of SDF-1alpha, RANTES, lymphotactin, and fractalkine indicate these chemokines adopt native structures. On-column refolded SDF-1alpha is fully active in an intracellular calcium flux assay. Our success with multiple SDF-1alpha mutants and members of all four chemokine subfamilies suggests that on-column refolding is a robust method for preparative-scale production of recombinant chemokine proteins.
我们已将一种高效的固相蛋白质重折叠方法应用于毫克级天然折叠重组趋化因子蛋白的生产。趋化因子是经过深入研究的蛋白质,因为它们在免疫系统调节、炎症反应、胎儿发育以及包括但不限于HIV-1/AIDS、癌症转移、克罗恩病、哮喘和关节炎在内的众多疾病状态中发挥作用。许多研究人员将重组趋化因子用于研究目的,然而这些蛋白质在大肠杆菌中表达时几乎完全分配到包涵体部分。一个主要障碍是正确重折叠趋化因子并氧化几乎所有趋化因子中发现的两个高度保守的二硫键。通过透析或极端稀释进行氧化和重折叠的传统方法有效但缓慢,并且会产生大量稀释的趋化因子。在这里,我们使用柱上方法对四种趋化因子CXCL12/SDF-1α(基质细胞衍生因子-1α)、CCL5/RANTES、XCL1/淋巴细胞趋化因子和CX3CL1/分形趋化因子进行快速重折叠和氧化。SDF-1α、RANTES、淋巴细胞趋化因子和分形趋化因子的核磁共振光谱表明这些趋化因子采用天然结构。柱上重折叠的SDF-1α在细胞内钙流测定中具有完全活性。我们对多个SDF-1α突变体和所有四个趋化因子亚家族成员的成功表明,柱上重折叠是一种用于制备规模生产重组趋化因子蛋白的可靠方法。