Suppr超能文献

脂质-胆固醇混合双层膜中的侧向组织

Lateral organization in lipid-cholesterol mixed bilayers.

作者信息

Pandit Sagar A, Khelashvili George, Jakobsson Eric, Grama Ananth, Scott H L

机构信息

Department of Computer Science, Purdue University, West Lafayette, Indiana, USA.

出版信息

Biophys J. 2007 Jan 15;92(2):440-7. doi: 10.1529/biophysj.106.093864. Epub 2006 Oct 27.

Abstract

Interactions between lipid and cholesterol molecules in membranes play an important role in the structural and functional properties of cell membranes. Although structural properties of lipid-cholesterol mixtures have been extensively studied, an understanding of the role of cholesterol in the lateral organization of bilayers has been elusive. In this article, we propose a simple yet powerful model, based on self-consistent mean-field theory and molecular dynamics simulations, for lipid bilayers containing cholesterol. Properties predicted by our model are shown to be in excellent agreement with experimental data. Our model predicts that cholesterol induces structural changes in the bilayer through the formation of regions of ordered lipids surrounding each cholesterol molecule. We find that the "smooth" and "rough" sides of cholesterol play crucial roles in formation and distribution of the ordered regions. Our model is predictive in that input parameters are obtained from independent atomistic molecular dynamics simulations. The model and method are general enough to describe other heterogeneous lipid bilayers, including lipid rafts.

摘要

膜中脂质与胆固醇分子之间的相互作用在细胞膜的结构和功能特性中起着重要作用。尽管脂质 - 胆固醇混合物的结构特性已得到广泛研究,但对胆固醇在双层膜横向组织中的作用仍缺乏了解。在本文中,我们基于自洽平均场理论和分子动力学模拟,为含胆固醇的脂质双层膜提出了一个简单而强大的模型。我们模型预测的特性与实验数据显示出极好的一致性。我们的模型预测,胆固醇通过在每个胆固醇分子周围形成有序脂质区域来诱导双层膜的结构变化。我们发现胆固醇的“平滑”面和“粗糙”面在有序区域的形成和分布中起着关键作用。我们的模型具有预测性,因为输入参数是从独立的原子分子动力学模拟中获得的。该模型和方法具有足够的通用性,能够描述其他异质脂质双层膜,包括脂筏。

相似文献

1
Lateral organization in lipid-cholesterol mixed bilayers.
Biophys J. 2007 Jan 15;92(2):440-7. doi: 10.1529/biophysj.106.093864. Epub 2006 Oct 27.
2
Toward a mathematical model of the assembly and disassembly of membrane microdomains: comparison with experimental models.
Biophys J. 2007 Jun 15;92(12):4145-56. doi: 10.1529/biophysj.106.090233. Epub 2007 Mar 23.
3
Assessing the nature of lipid raft membranes.
PLoS Comput Biol. 2007 Feb 23;3(2):e34. doi: 10.1371/journal.pcbi.0030034. Epub 2007 Jan 5.
4
Effect of membrane characteristics on phase separation and domain formation in cholesterol-lipid mixtures.
Biophys J. 2005 Feb;88(2):916-24. doi: 10.1529/biophysj.104.052241. Epub 2004 Nov 12.
5
Comparison of density functional theory and simulation of fluid bilayers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 1):041924. doi: 10.1103/PhysRevE.72.041924. Epub 2005 Oct 25.
6
Sphingomyelin-cholesterol domains in phospholipid membranes: atomistic simulation.
Biophys J. 2004 Aug;87(2):1092-100. doi: 10.1529/biophysj.104.041939.
7
Aspirin inhibits formation of cholesterol rafts in fluid lipid membranes.
Biochim Biophys Acta. 2015 Mar;1848(3):805-12. doi: 10.1016/j.bbamem.2014.11.023. Epub 2014 Dec 2.
8
Self-consistent mean-field model for palmitoyloleoylphosphatidylcholine-palmitoyl sphingomyelin-cholesterol lipid bilayers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Mar;83(3 Pt 1):031925. doi: 10.1103/PhysRevE.83.031925. Epub 2011 Mar 31.
10
Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes.
Biophys J. 2004 May;86(5):2965-79. doi: 10.1016/S0006-3495(04)74347-7.

引用本文的文献

3
25-Hydroxycholesterol Effect on Membrane Structure and Mechanical Properties.
Int J Mol Sci. 2021 Mar 4;22(5):2574. doi: 10.3390/ijms22052574.
4
Nanoscale Membrane Domain Formation Driven by Cholesterol.
Sci Rep. 2017 Apr 25;7(1):1143. doi: 10.1038/s41598-017-01247-9.
5
Self-consistent mean-field model for palmitoyloleoylphosphatidylcholine-palmitoyl sphingomyelin-cholesterol lipid bilayers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Mar;83(3 Pt 1):031925. doi: 10.1103/PhysRevE.83.031925. Epub 2011 Mar 31.
7
Phase separation in biological membranes: integration of theory and experiment.
Annu Rev Biophys. 2010;39:207-26. doi: 10.1146/annurev.biophys.093008.131238.
8
Lateral organization of complex lipid mixtures from multiscale modeling.
J Chem Phys. 2010 Feb 14;132(6):065104. doi: 10.1063/1.3314729.
10
Phase diagrams of lipid mixtures relevant to the study of membrane rafts.
Biochim Biophys Acta. 2008 Nov-Dec;1781(11-12):665-84. doi: 10.1016/j.bbalip.2008.09.002. Epub 2008 Oct 7.

本文引用的文献

1
Phosphatidylcholine: cholesterol phase diagrams.
Biophys J. 1992 Oct;63(4):1176-81. doi: 10.1016/S0006-3495(92)81681-8.
2
Partial molecular volumes of lipids and cholesterol.
Chem Phys Lipids. 2006 Sep;143(1-2):1-10. doi: 10.1016/j.chemphyslip.2006.04.002. Epub 2006 Apr 28.
3
Phase diagram of a ternary mixture of cholesterol and saturated and unsaturated lipids calculated from a microscopic model.
Phys Rev Lett. 2006 Mar 10;96(9):098101. doi: 10.1103/PhysRevLett.96.098101. Epub 2006 Mar 6.
4
A role for direct interactions in the modulation of rhodopsin by omega-3 polyunsaturated lipids.
Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4888-93. doi: 10.1073/pnas.0508352103. Epub 2006 Mar 17.
5
Theory of the deuterium NMR of sterol-phospholipid membranes.
Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1184-9. doi: 10.1073/pnas.0510514103. Epub 2006 Jan 23.
7
Areas of molecules in membranes consisting of mixtures.
Biophys J. 2005 Sep;89(3):1827-32. doi: 10.1529/biophysj.105.064329. Epub 2005 Jul 1.
9
Complexation of phosphatidylcholine lipids with cholesterol.
Biophys J. 2004 Mar;86(3):1345-56. doi: 10.1016/S0006-3495(04)74206-X.
10
Condensed complexes of cholesterol and phospholipids.
Biochim Biophys Acta. 2003 Mar 10;1610(2):159-73. doi: 10.1016/s0005-2736(03)00015-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验