Suppr超能文献

泛素在强制淬灭时的重折叠以及机械和热变性途径

Refolding upon force quench and pathways of mechanical and thermal unfolding of ubiquitin.

作者信息

Li Mai Suan, Kouza Maksim, Hu Chin-Kun

机构信息

Institute of Physics, Polish Academy of Sciences, Warsaw, Poland.

出版信息

Biophys J. 2007 Jan 15;92(2):547-61. doi: 10.1529/biophysj.106.087684. Epub 2006 Oct 27.

Abstract

The refolding from stretched initial conformations of ubiquitin (PDB ID: 1ubq) under the quenched force is studied using the C(alpha)-Gō model and the Langevin dynamics. It is shown that the refolding decouples the collapse and folding kinetics. The force-quench refolding-times scale as tau(F) approximately exp(f(q)Deltax(F)/k(B)T), where f(q) is the quench force and Deltax(F) approximately 0.96 nm is the location of the average transition state along the reaction coordinate given by the end-to-end distance. This value is close to Deltax(F) approximately 0.8 nm obtained from the force-clamp experiments. The mechanical and thermal unfolding pathways are studied and compared with the experimental and all-atom simulation results in detail. The sequencing of thermal unfolding was found to be markedly different from the mechanical one. It is found that fixing the N-terminus of ubiquitin changes its mechanical unfolding pathways much more drastically compared to the case when the C-end is anchored. We obtained the distance between the native state and the transition state Deltax(UF) approximately 0.24 nm, which is in reasonable agreement with the experimental data.

摘要

利用C(α)-Gō模型和朗之万动力学研究了泛素(PDB ID:1ubq)在猝灭力作用下从拉伸的初始构象重折叠的过程。结果表明,重折叠使塌缩和折叠动力学解耦。力猝灭重折叠时间尺度为τ(F)≈exp(f(q)Δx(F)/k(B)T),其中f(q)是猝灭力,Δx(F)≈0.96 nm是沿着由端到端距离给出的反应坐标的平均过渡态位置。该值接近从力钳实验获得的Δx(F)≈0.8 nm。研究了机械和热展开途径,并与实验和全原子模拟结果进行了详细比较。发现热展开的顺序与机械展开的顺序明显不同。发现固定泛素的N端比固定C端时更剧烈地改变其机械展开途径。我们得到了天然态和过渡态之间的距离Δx(UF)≈0.24 nm,这与实验数据合理吻合。

相似文献

1
Refolding upon force quench and pathways of mechanical and thermal unfolding of ubiquitin.
Biophys J. 2007 Jan 15;92(2):547-61. doi: 10.1529/biophysj.106.087684. Epub 2006 Oct 27.
2
Multiple stepwise refolding of immunoglobulin domain I27 upon force quench depends on initial conditions.
Proc Natl Acad Sci U S A. 2006 Jan 3;103(1):93-8. doi: 10.1073/pnas.0503758103. Epub 2005 Dec 22.
3
Forced-unfolding and force-quench refolding of RNA hairpins.
Biophys J. 2006 May 15;90(10):3410-27. doi: 10.1529/biophysj.105.078030. Epub 2006 Feb 10.
5
Reversible mechanical unfolding of single ubiquitin molecules.
Biophys J. 2004 Dec;87(6):3995-4006. doi: 10.1529/biophysj.104.042754. Epub 2004 Sep 10.
6
7
Topography of the free-energy landscape probed via mechanical unfolding of proteins.
J Chem Phys. 2005 Jun 15;122(23):234915. doi: 10.1063/1.1931659.
8
Mechanical unfolding and refolding pathways of ubiquitin.
Phys Rev Lett. 2008 Apr 18;100(15):158104. doi: 10.1103/PhysRevLett.100.158104.
9
Fluctuations of primary ubiquitin folding intermediates in a force clamp.
J Struct Biol. 2007 Mar;157(3):557-69. doi: 10.1016/j.jsb.2006.11.005. Epub 2006 Nov 26.
10
Dwell-time distribution analysis of polyprotein unfolding using force-clamp spectroscopy.
Biophys J. 2007 Apr 15;92(8):2896-903. doi: 10.1529/biophysj.106.099481. Epub 2007 Jan 26.

引用本文的文献

1
Is Posttranslational Folding More Efficient Than Refolding from a Denatured State: A Computational Study.
J Phys Chem B. 2023 Jun 1;127(21):4761-4774. doi: 10.1021/acs.jpcb.3c01694. Epub 2023 May 18.
2
The Role of Data in Model Building and Prediction: A Survey Through Examples.
Entropy (Basel). 2018 Oct 22;20(10):807. doi: 10.3390/e20100807.
3
The role of binding site on the mechanical unfolding mechanism of ubiquitin.
Sci Rep. 2015 Mar 4;5:8757. doi: 10.1038/srep08757.
4
Protein high-force pulling simulations yield low-force results.
PLoS One. 2012;7(4):e34781. doi: 10.1371/journal.pone.0034781. Epub 2012 Apr 18.
5
Minimum energy compact structures in force-quench polyubiquitin folding are domain swapped.
Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):6963-8. doi: 10.1073/pnas.1018177108. Epub 2011 Apr 11.
6
Molecular basis for the structural stability of an enclosed β-barrel loop.
J Mol Biol. 2010 Sep 17;402(2):475-89. doi: 10.1016/j.jmb.2010.07.035. Epub 2010 Jul 23.
7
Insights from coarse-grained Gō models for protein folding and dynamics.
Int J Mol Sci. 2009 Mar;10(3):889-905. doi: 10.3390/ijms10030889. Epub 2009 Mar 2.
9
Changing the mechanical unfolding pathway of FnIII10 by tuning the pulling strength.
Biophys J. 2009 Jan;96(2):429-41. doi: 10.1016/j.bpj.2008.09.043.
10
Crowding effects on the mechanical stability and unfolding pathways of ubiquitin.
J Phys Chem B. 2009 Jan 8;113(1):359-68. doi: 10.1021/jp807755b.

本文引用的文献

1
Thermal versus mechanical unfolding of ubiquitin.
Proteins. 2006 Nov 15;65(3):759-66. doi: 10.1002/prot.21145.
2
Characterizing the protein folding transition state using psi analysis.
Chem Rev. 2006 May;106(5):1862-76. doi: 10.1021/cr040431q.
3
Effect of finite size on cooperativity and rates of protein folding.
J Phys Chem A. 2006 Jan 19;110(2):671-6. doi: 10.1021/jp053770b.
4
Multiple stepwise refolding of immunoglobulin domain I27 upon force quench depends on initial conditions.
Proc Natl Acad Sci U S A. 2006 Jan 3;103(1):93-8. doi: 10.1073/pnas.0503758103. Epub 2005 Dec 22.
6
Mechanical resistance of proteins explained using simple molecular models.
Biophys J. 2006 Jan 1;90(1):287-97. doi: 10.1529/biophysj.105.071035. Epub 2005 Oct 7.
7
Dissecting the mechanical unfolding of ubiquitin.
Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13427-32. doi: 10.1073/pnas.0501581102. Epub 2005 Sep 7.
9
Folding of the protein domain hbSBD.
Biophys J. 2005 Nov;89(5):3353-61. doi: 10.1529/biophysj.105.065151. Epub 2005 Aug 26.
10
Topography of the free-energy landscape probed via mechanical unfolding of proteins.
J Chem Phys. 2005 Jun 15;122(23):234915. doi: 10.1063/1.1931659.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验