Suppr超能文献

Snf1-Gal83蛋白激酶核质分布的调控

Regulation of the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase.

作者信息

Hedbacker Kristina, Carlson Marian

机构信息

Department of Genetics and Development, Columbia University, 701 W. 168th Street, HSC922, New York, NY 10032, USA.

出版信息

Eukaryot Cell. 2006 Dec;5(12):1950-6. doi: 10.1128/EC.00256-06. Epub 2006 Oct 27.

Abstract

Snf1 protein kinase containing the beta subunit Gal83 is localized in the cytoplasm during growth of Saccharomyces cerevisiae cells in abundant glucose and accumulates in the nucleus in response to glucose limitation. Nuclear localization of Snf1-Gal83 requires activation of the Snf1 catalytic subunit and depends on Gal83, but in the snf1Delta mutant, Gal83 exhibits glucose-regulated nuclear accumulation. We show here that the N terminus of Gal83, which is divergent from those of the other beta subunits, is necessary and sufficient for Snf1-independent, glucose-regulated localization. We identify a leucine-rich nuclear export signal in the N terminus and show that export depends on the Crm1 export receptor. We present evidence that catalytically inactive Snf1 promotes the cytoplasmic retention of Gal83 in glucose-grown cells through its interaction with the C terminus of Gal83; cytoplasmic localization of inactive Snf1-Gal83 maintains accessibility to the Snf1-activating kinases. Finally, we characterize the effects of glucose phosphorylation on localization. These studies define roles for Snf1 and Gal83 in determining the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase.

摘要

含有β亚基Gal83的Snf1蛋白激酶在酿酒酵母细胞于丰富葡萄糖中生长时定位于细胞质中,并在葡萄糖受限的情况下积累于细胞核中。Snf1-Gal83的核定位需要Snf1催化亚基的激活且依赖于Gal83,但在snf1Delta突变体中,Gal83表现出葡萄糖调节的核积累。我们在此表明,Gal83与其他β亚基不同的N末端对于不依赖Snf1的葡萄糖调节定位是必要且充分的。我们在N末端鉴定出一个富含亮氨酸的核输出信号,并表明输出依赖于Crm1输出受体。我们提供证据表明,催化无活性的Snf1通过与Gal83的C末端相互作用促进Gal83在葡萄糖生长细胞中的细胞质保留;无活性的Snf1-Gal83的细胞质定位维持了对Snf1激活激酶的可及性。最后,我们表征了葡萄糖磷酸化对定位的影响。这些研究确定了Snf1和Gal83在决定Snf1-Gal83蛋白激酶的核质分布中的作用。

相似文献

1
Regulation of the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase.
Eukaryot Cell. 2006 Dec;5(12):1950-6. doi: 10.1128/EC.00256-06. Epub 2006 Oct 27.
2
Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase.
Mol Cell Biol. 2004 Sep;24(18):8255-63. doi: 10.1128/MCB.24.18.8255-8263.2004.
5
Gal83 mediates the interaction of the Snf1 kinase complex with the transcription activator Sip4.
EMBO J. 1999 Dec 1;18(23):6672-81. doi: 10.1093/emboj/18.23.6672.
6
Reg1 protein regulates phosphorylation of all three Snf1 isoforms but preferentially associates with the Gal83 isoform.
Eukaryot Cell. 2011 Dec;10(12):1628-36. doi: 10.1128/EC.05176-11. Epub 2011 Oct 14.
7
The β subunit of yeast AMP-activated protein kinase directs substrate specificity in response to alkaline stress.
Cell Signal. 2016 Dec;28(12):1881-1893. doi: 10.1016/j.cellsig.2016.08.016. Epub 2016 Aug 31.
8
Snf1 kinases with different beta-subunit isoforms play distinct roles in regulating haploid invasive growth.
Mol Cell Biol. 2003 Feb;23(4):1341-8. doi: 10.1128/MCB.23.4.1341-1348.2003.
10
Phosphorylation of yeast hexokinase 2 regulates its nucleocytoplasmic shuttling.
J Biol Chem. 2012 Dec 7;287(50):42151-64. doi: 10.1074/jbc.M112.401679. Epub 2012 Oct 12.

引用本文的文献

1
plays a crucial role in the utilization of -alkane and transcriptional regulation of the genes involved in it in the yeast .
Heliyon. 2024 Jun 12;10(12):e32886. doi: 10.1016/j.heliyon.2024.e32886. eCollection 2024 Jun 30.
2
Nutrient-dependent signaling pathways that control autophagy in yeast.
FEBS Lett. 2024 Jan;598(1):32-47. doi: 10.1002/1873-3468.14741. Epub 2023 Oct 9.
4
Intrinsically disordered signaling proteins: Essential hub players in the control of stress responses in Saccharomyces cerevisiae.
PLoS One. 2022 Mar 15;17(3):e0265422. doi: 10.1371/journal.pone.0265422. eCollection 2022.
5
Kog1/Raptor mediates metabolic rewiring during nutrient limitation by controlling SNF1/AMPK activity.
Sci Adv. 2021 Apr 14;7(16). doi: 10.1126/sciadv.abe5544. Print 2021 Apr.
7
AMPK-Mediated Regulation of Alpha-Arrestins and Protein Trafficking.
Int J Mol Sci. 2019 Jan 25;20(3):515. doi: 10.3390/ijms20030515.
8
Conventional and emerging roles of the energy sensor Snf1/AMPK in .
Microb Cell. 2018 Sep 29;5(11):482-494. doi: 10.15698/mic2018.11.655.

本文引用的文献

1
3
Function of mammalian LKB1 and Ca2+/calmodulin-dependent protein kinase kinase alpha as Snf1-activating kinases in yeast.
J Biol Chem. 2005 Jun 10;280(23):21804-9. doi: 10.1074/jbc.M501887200. Epub 2005 Apr 14.
5
Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase.
Mol Cell Biol. 2004 Sep;24(18):8255-63. doi: 10.1128/MCB.24.18.8255-8263.2004.
6
Cyclic AMP-dependent protein kinase regulates the subcellular localization of Snf1-Sip1 protein kinase.
Mol Cell Biol. 2004 Mar;24(5):1836-43. doi: 10.1128/MCB.24.5.1836-1843.2004.
8
Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex.
Curr Biol. 2003 Aug 5;13(15):1299-305. doi: 10.1016/s0960-9822(03)00459-7.
9
Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases.
Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8839-43. doi: 10.1073/pnas.1533136100. Epub 2003 Jul 7.
10
Yeast Pak1 kinase associates with and activates Snf1.
Mol Cell Biol. 2003 Jun;23(11):3909-17. doi: 10.1128/MCB.23.11.3909-3917.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验