Suppr超能文献

无规则信号蛋白:酿酒酵母应激反应调控中的重要核心分子。

Intrinsically disordered signaling proteins: Essential hub players in the control of stress responses in Saccharomyces cerevisiae.

机构信息

Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.

Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.

出版信息

PLoS One. 2022 Mar 15;17(3):e0265422. doi: 10.1371/journal.pone.0265422. eCollection 2022.

Abstract

Cells have developed diverse mechanisms to monitor changes in their surroundings. This allows them to establish effective responses to cope with adverse environments. Some of these mechanisms have been well characterized in the budding yeast Saccharomyces cerevisiae, an excellent experimental model to explore and elucidate some of the strategies selected in eukaryotic organisms to adjust their growth and development in stressful conditions. The relevance of structural disorder in proteins and the impact on their functions has been uncovered for proteins participating in different processes. This is the case of some transcription factors (TFs) and other signaling hub proteins, where intrinsically disordered regions (IDRs) play a critical role in their function. In this work, we present a comprehensive bioinformatic analysis to evaluate the significance of structural disorder in those TFs (170) recognized in S. cerevisiae. Our findings show that 85.2% of these TFs contain at least one IDR, whereas ~30% exhibit a higher disorder level and thus were considered as intrinsically disordered proteins (IDPs). We also found that TFs contain a higher number of IDRs compared to the rest of the yeast proteins, and that intrinsically disordered TFs (IDTFs) have a higher number of protein-protein interactions than those with low structural disorder. The analysis of different stress response pathways showed a high content of structural disorder not only in TFs but also in other signaling proteins. The propensity of yeast proteome to undergo a liquid-liquid phase separation (LLPS) was also analyzed, showing that a significant proportion of IDTFs may undergo this phenomenon. Our analysis is a starting point for future research on the importance of structural disorder in yeast stress responses.

摘要

细胞已经发展出多种机制来监测周围环境的变化。这使它们能够建立有效的反应来应对不利环境。其中一些机制在芽殖酵母酿酒酵母中得到了很好的描述,这是一个极好的实验模型,可以探索和阐明真核生物中选择的一些策略,以调节它们在压力条件下的生长和发育。参与不同过程的蛋白质的结构无序性及其对功能的影响已经被揭示出来。一些转录因子(TFs)和其他信号枢纽蛋白就是这种情况,其中无序区域(IDRs)在它们的功能中起着关键作用。在这项工作中,我们进行了全面的生物信息学分析,以评估在酿酒酵母中识别的这些 TF(170 个)中结构无序性的重要性。我们的研究结果表明,这些 TF 中有 85.2%至少含有一个 IDR,而约 30%的 TF 表现出更高的无序水平,因此被认为是固有无序蛋白(IDP)。我们还发现,与其他酵母蛋白相比,TF 包含更多的 IDR,并且固有无序 TF(IDTF)比那些结构无序程度较低的 TF 具有更多的蛋白质-蛋白质相互作用。对不同应激反应途径的分析表明,不仅在 TF 中,而且在其他信号蛋白中都存在大量的结构无序。还分析了酵母蛋白质组发生液-液相分离(LLPS)的倾向,表明相当一部分 IDTF 可能会发生这种现象。我们的分析为未来研究酵母应激反应中结构无序的重要性提供了一个起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98ad/8923507/fad8b131b316/pone.0265422.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验