Suppr超能文献

基于CT数据的骨骼有限元建模:对几何形状和材料不确定性的敏感性

Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties.

作者信息

Taddei Fulvia, Martelli Saulo, Reggiani Barbara, Cristofolini Luca, Viceconti Marco

机构信息

Laboratorio di Tecnologia Medica, Istituti Ortopedici Rizzoli, Bologna 40136, Italy.

出版信息

IEEE Trans Biomed Eng. 2006 Nov;53(11):2194-200. doi: 10.1109/TBME.2006.879473.

Abstract

The aim of this paper is to analyze how the uncertainties in modelling the geometry and the material properties of a human bone affect the predictions of a finite-element model derived from computed tomography (CT) data. A sensitivity analysis, based on a Monte Carlo method, was performed using three femur models generated from in vivo CT datasets, each subjected to two different loading conditions. The geometry, the density and the mechanical properties of the bone tissue were considered as random input variables. Finite-element results typically used in biomechanics research were considered as statistical output variables, and their sensitivity to the inputs variability assessed. The results showed that it is not possible to define a priori the influence of the errors related to the geometry definition process and to the material assignment process on the finite-element analysis results. The errors in the geometric representation of the bone are always the dominant variables for the stresses, as was expected. However, for all the variables, the results seemed to be dependent on the loading condition and to vary from subject to subject. The most interesting result is, however, that using the proposed method to build a finite-element model of a femur from a CT dataset of the quality typically achievable in the clinical practice, the coefficients of variation of the output variables never exceed the 9%. The presented method is hence robust enough to be used for investigating the mechanical behavior of bones with subject-specific finite-element models derived from CT data taken in vivo.

摘要

本文旨在分析人体骨骼几何形状和材料属性建模中的不确定性如何影响源自计算机断层扫描(CT)数据的有限元模型的预测结果。基于蒙特卡洛方法,对从体内CT数据集生成的三个股骨模型进行了敏感性分析,每个模型都承受两种不同的加载条件。骨组织的几何形状、密度和力学性能被视为随机输入变量。生物力学研究中常用的有限元结果被视为统计输出变量,并评估其对输入变量变异性的敏感性。结果表明,无法事先确定与几何定义过程和材料赋值过程相关的误差对有限元分析结果的影响。正如预期的那样,骨骼几何表示中的误差始终是应力的主要变量。然而,对于所有变量,结果似乎取决于加载条件,并且因个体而异。然而,最有趣的结果是,使用所提出的方法从临床实践中通常可获得的质量的CT数据集中构建股骨的有限元模型时,输出变量的变异系数从未超过9%。因此,所提出的方法足够稳健,可用于通过源自体内CT数据的特定个体有限元模型来研究骨骼的力学行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验