Suppr超能文献

广义动态神经网络在生物医学数据中的应用。

Application of generalized dynamic neural networks to biomedical data.

作者信息

Leistritz Lutz, Galicki Miroslaw, Kochs Eberhard, Zwick Ernst Bernhard, Fitzek Clemens, Reichenbach Jürgen R, Witte Herbert

机构信息

Institute of Medical Statistics, Computer Sciences, and Documentation, Friedrich Schiller University Jena, Jena 07740, Germany.

出版信息

IEEE Trans Biomed Eng. 2006 Nov;53(11):2289-99. doi: 10.1109/TBME.2006.881766.

Abstract

This paper reviews the application of continuous recurrent neural networks with time-varying weights to pattern recognition tasks in medicine. A general learning algorithm based on Pontryagin's maximum principle is recapitulated, and possibilities of improving the generalization capabilities of these networks are given. The effectiveness of the methods is demonstrated by three different real-world examples taken from the fields of anesthesiology, orthopedics, and radiology.

摘要

本文综述了具有时变权重的连续递归神经网络在医学模式识别任务中的应用。概括了一种基于庞特里亚金极大值原理的通用学习算法,并给出了提高这些网络泛化能力的可能性。通过取自麻醉学、骨科和放射学领域的三个不同的实际例子证明了这些方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验