Suppr超能文献

基于硬件嵌入的神经形态神经网络的实时数据集分类。

Real-time classification of datasets with hardware embedded neuromorphic neural networks.

机构信息

Petru MaiorUniversity, Tirgu-Mures, Romania.

出版信息

Brief Bioinform. 2010 May;11(3):348-63. doi: 10.1093/bib/bbp066. Epub 2010 Jan 6.

Abstract

Neuromorphic artificial neural networks attempt to understand the essential computations that take place in the dense networks of interconnected neurons making up the central nervous systems in living creatures. This article demonstrates that artificial spiking neural networks--built to resemble the biological model--encoding information in the timing of single spikes, are capable of computing and learning clusters from realistic data. It shows how a spiking neural network based on spike-time coding can successfully perform unsupervised and supervised clustering on real-world data. A temporal encoding procedure of continuously valued data is developed, together with a hardware implementation oriented new learning rule set. Solutions that make use of embedded soft-core microcontrollers are investigated, to implement some of the most resource-consuming components of the artificial neural network. Details of the implementations are given, with benchmark application evaluation and test bench description. Measurement results are presented, showing real-time and adaptive data processing capabilities, comparing these to related findings in the specific literature.

摘要

神经形态人工神经网络试图理解在构成生物中枢神经系统的密集互联神经元网络中发生的基本计算。本文表明,人工尖峰神经网络——模仿生物模型构建,以单个尖峰的时间编码信息——能够从实际数据中计算和学习聚类。它展示了基于尖峰时间编码的尖峰神经网络如何成功地对现实世界的数据进行无监督和监督聚类。本文开发了一种连续值数据的时间编码过程,以及一套面向硬件实现的新学习规则集。研究了利用嵌入式软核微控制器的解决方案,以实现人工神经网络中最消耗资源的一些组件。给出了实现细节,包括基准应用评估和测试台描述。展示了测量结果,展示了实时和自适应数据处理能力,并与特定文献中的相关发现进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验