Zheng Chun-Hou, Huang De-Shuang, Li Kang, Irwin George, Sun Zhan-Li
Intelligent Computing Lab, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui, China.
Neural Comput. 2007 Sep;19(9):2557-78. doi: 10.1162/neco.2007.19.9.2557.
In this letter, a standard postnonlinear blind source separation algorithm is proposed, based on the MISEP method, which is widely used in linear and nonlinear independent component analysis. To best suit a wide class of postnonlinear mixtures, we adapt the MISEP method to incorporate a priori information of the mixtures. In particular, a group of three-layered perceptrons and a linear network are used as the unmixing system to separate sources in the postnonlinear mixtures, and another group of three-layered perceptron is used as the auxiliary network. The learning algorithm for the unmixing system is then obtained by maximizing the output entropy of the auxiliary network. The proposed method is applied to postnonlinear blind source separation of both simulation signals and real speech signals, and the experimental results demonstrate its effectiveness and efficiency in comparison with existing methods.
在这封信中,基于广泛应用于线性和非线性独立成分分析的MISEP方法,提出了一种标准的后非线性盲源分离算法。为了最适合广泛的后非线性混合情况,我们对MISEP方法进行了调整,以纳入混合的先验信息。具体而言,使用一组三层感知器和一个线性网络作为解混系统,以分离后非线性混合中的源,另一组三层感知器用作辅助网络。然后,通过最大化辅助网络的输出熵来获得解混系统的学习算法。所提出的方法应用于模拟信号和真实语音信号的后非线性盲源分离,实验结果表明,与现有方法相比,该方法具有有效性和高效性。