文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于可视化分析的图形签名。

Graph signatures for visual analytics.

作者信息

Wong Pak Chung, Foote Harlan, Chin George, Mackey Patrick, Perrine Ken

机构信息

Pacific Northwest National Laboratory, Richland, WA 99352, USA.

出版信息

IEEE Trans Vis Comput Graph. 2006 Nov-Dec;12(6):1399-413. doi: 10.1109/TVCG.2006.92.


DOI:10.1109/TVCG.2006.92
PMID:17073364
Abstract

We present a visual analytics technique to explore graphs using the concept of a data signature. A data signature, in our context, is a multidimensional vector that captures the local topology information surrounding each graph node. Signature vectors extracted from a graph are projected onto a low-dimensional scatterplot through the use of scaling. The resultant scatterplot, which reflects the similarities of the vectors, allows analysts to examine the graph structures and their corresponding real-life interpretations through repeated use of brushing and linking between the two visualizations. The interpretation of the graph structures is based on the outcomes of multiple participatory analysis sessions with intelligence analysts conducted by the authors at the Pacific Northwest National Laboratory. The paper first uses three public domain data sets with either well-known or obvious features to explain the rationale of our design and illustrate its results. More advanced examples are then used in a customized usability study to evaluate the effectiveness and efficiency of our approach. The study results reveal not only the limitations and weaknesses of the traditional approach based solely on graph visualization, but also the advantages and strengths of our signature-guided approach presented in the paper.

摘要

我们提出了一种使用数据签名概念来探索图形的可视化分析技术。在我们的语境中,数据签名是一个多维向量,它捕获围绕每个图形节点的局部拓扑信息。通过缩放,从图形中提取的签名向量被投影到一个低维散点图上。由此产生的散点图反映了向量的相似性,使分析师能够通过在两种可视化之间反复使用刷选和链接来检查图形结构及其相应的实际解释。图形结构的解释基于作者在太平洋西北国家实验室与情报分析师进行的多次参与式分析会议的结果。本文首先使用三个具有知名或明显特征的公共领域数据集来解释我们设计的基本原理并展示其结果。然后在定制的可用性研究中使用更高级的示例来评估我们方法的有效性和效率。研究结果不仅揭示了仅基于图形可视化的传统方法的局限性和弱点,还揭示了本文提出的基于签名的方法的优点和优势。

相似文献

[1]
Graph signatures for visual analytics.

IEEE Trans Vis Comput Graph. 2006

[2]
Generating graphs for visual analytics through interactive sketching.

IEEE Trans Vis Comput Graph. 2006

[3]
Interactive visual analysis of families of function graphs.

IEEE Trans Vis Comput Graph. 2006

[4]
TreePlus: interactive exploration of networks with enhanced tree layouts.

IEEE Trans Vis Comput Graph. 2006

[5]
Cross-filtered views for multidimensional visual analysis.

IEEE Trans Vis Comput Graph. 2010

[6]
On the visualization of social and other scale-free networks.

IEEE Trans Vis Comput Graph. 2008

[7]
Perceptual organization in user-generated graph layouts.

IEEE Trans Vis Comput Graph. 2008

[8]
Visual signatures in video visualization.

IEEE Trans Vis Comput Graph. 2006

[9]
High-dimensional visual analytics: interactive exploration guided by pairwise views of point distributions.

IEEE Trans Vis Comput Graph. 2006

[10]
Graph visualization techniques for web clustering engines.

IEEE Trans Vis Comput Graph. 2007

引用本文的文献

[1]
neuroVIISAS: approaching multiscale simulation of the rat connectome.

Neuroinformatics. 2012-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索