文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

高维视觉分析:基于点分布的成对视图引导的交互式探索。

High-dimensional visual analytics: interactive exploration guided by pairwise views of point distributions.

作者信息

Wilkinson Leland, Anand Anushka, Grossman Robert

机构信息

SPSS Inc, Chicago, IL 60606, USA.

出版信息

IEEE Trans Vis Comput Graph. 2006 Nov-Dec;12(6):1363-72. doi: 10.1109/TVCG.2006.94.


DOI:10.1109/TVCG.2006.94
PMID:17073361
Abstract

We introduce a method for organizing multivariate displays and for guiding interactive exploration through high-dimensional data. The method is based on nine characterizations of the 2D distributions of orthogonal pairwise projections on a set of points in multidimensional Euclidean space. These characterizations include such measures as density, skewness, shape, outliers, and texture. Statistical analysis of these measures leads to ways for 1) organizing 2D scatterplots of points for coherent viewing, 2) locating unusual (outlying) marginal 2D distributions of points for anomaly detection, and 3) sorting multivariate displays based on high-dimensional data, such as trees, parallel coordinates, and glyphs.

摘要

我们介绍了一种用于组织多元显示以及指导通过高维数据进行交互式探索的方法。该方法基于对多维欧几里得空间中一组点的正交成对投影的二维分布的九种特征描述。这些特征描述包括诸如密度、偏度、形状、异常值和纹理等度量。对这些度量进行统计分析可得出以下方法:1)组织点的二维散点图以便连贯查看;2)定位点的异常(离群)边缘二维分布以进行异常检测;3)基于高维数据对多元显示进行排序,如图树、平行坐标和符号。

相似文献

[1]
High-dimensional visual analytics: interactive exploration guided by pairwise views of point distributions.

IEEE Trans Vis Comput Graph. 2006

[2]
Interactive visual analysis of families of function graphs.

IEEE Trans Vis Comput Graph. 2006

[3]
TimeSeer: Scagnostics for high-dimensional time series.

IEEE Trans Vis Comput Graph. 2013-3

[4]
Parallel sets: interactive exploration and visual analysis of categorical data.

IEEE Trans Vis Comput Graph. 2006

[5]
Mapping high-dimensional data onto a relative distance plane--an exact method for visualizing and characterizing high-dimensional patterns.

J Biomed Inform. 2004-10

[6]
TreePlus: interactive exploration of networks with enhanced tree layouts.

IEEE Trans Vis Comput Graph. 2006

[7]
A visual analytics approach to understanding spatiotemporal hotspots.

IEEE Trans Vis Comput Graph. 2010

[8]
Graph signatures for visual analytics.

IEEE Trans Vis Comput Graph. 2006

[9]
Generating graphs for visual analytics through interactive sketching.

IEEE Trans Vis Comput Graph. 2006

[10]
FINE: fisher information nonparametric embedding.

IEEE Trans Pattern Anal Mach Intell. 2009-11

引用本文的文献

[1]
Brain Activity is Influenced by How High Dimensional Data are Represented: An EEG Study of Scatterplot Diagnostic (Scagnostics) Measures.

J Healthc Inform Res. 2023-12-12

[2]
Temporal scatterplots.

Comput Vis Media (Beijing). 2020

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索