Suppr超能文献

高维视觉分析:基于点分布的成对视图引导的交互式探索。

High-dimensional visual analytics: interactive exploration guided by pairwise views of point distributions.

作者信息

Wilkinson Leland, Anand Anushka, Grossman Robert

机构信息

SPSS Inc, Chicago, IL 60606, USA.

出版信息

IEEE Trans Vis Comput Graph. 2006 Nov-Dec;12(6):1363-72. doi: 10.1109/TVCG.2006.94.

Abstract

We introduce a method for organizing multivariate displays and for guiding interactive exploration through high-dimensional data. The method is based on nine characterizations of the 2D distributions of orthogonal pairwise projections on a set of points in multidimensional Euclidean space. These characterizations include such measures as density, skewness, shape, outliers, and texture. Statistical analysis of these measures leads to ways for 1) organizing 2D scatterplots of points for coherent viewing, 2) locating unusual (outlying) marginal 2D distributions of points for anomaly detection, and 3) sorting multivariate displays based on high-dimensional data, such as trees, parallel coordinates, and glyphs.

摘要

我们介绍了一种用于组织多元显示以及指导通过高维数据进行交互式探索的方法。该方法基于对多维欧几里得空间中一组点的正交成对投影的二维分布的九种特征描述。这些特征描述包括诸如密度、偏度、形状、异常值和纹理等度量。对这些度量进行统计分析可得出以下方法:1)组织点的二维散点图以便连贯查看;2)定位点的异常(离群)边缘二维分布以进行异常检测;3)基于高维数据对多元显示进行排序,如图树、平行坐标和符号。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验