Suppr超能文献

高质量的三维时变向量场交互式动画。

High-quality and interactive animations of 3D time-varying vector fields.

作者信息

Helgeland Anders, Elboth Thomas

机构信息

University of Oslo and the University Graduate Center, Unik, Kjeller, Norway.

出版信息

IEEE Trans Vis Comput Graph. 2006 Nov-Dec;12(6):1535-46. doi: 10.1109/TVCG.2006.95.

Abstract

In this paper, we present an interactive texture-based method for visualizing three-dimensional unsteady vector fields. The visualization method uses a sparse and global representation of the flow, such that it does not suffer from the same perceptual issues as is the case for visualizing dense representations. The animation is made by injecting a collection of particles evenly distributed throughout the physical domain. These particles are then tracked along their path lines. At each time step, these particles are used as seed points to generate field lines using any vector field such as the velocity field or vorticity field. In this way, the animation shows the advection of particles while each frame in the animation shows the instantaneous vector field. In order to maintain a coherent particle density and to avoid clustering as time passes, we have developed a novel particle advection strategy which produces approximately evenly-spaced field lines at each time step. To improve rendering performance, we decouple the rendering stage from the preceding stages of the visualization method. This allows interactive exploration of multiple fields simultaneously, which sets the stage for a more complete analysis of the flow field. The final display is rendered using texture-based direct volume rendering.

摘要

在本文中,我们提出了一种基于交互式纹理的方法来可视化三维非定常矢量场。该可视化方法使用流场的稀疏全局表示,因此不会像可视化密集表示那样存在相同的感知问题。动画通过在整个物理域中均匀分布地注入一组粒子来制作。然后沿着这些粒子的迹线对其进行跟踪。在每个时间步,这些粒子被用作种子点,使用诸如速度场或涡度场等任何矢量场来生成场线。通过这种方式,动画展示了粒子的平流,而动画中的每一帧都展示了瞬时矢量场。为了保持连贯的粒子密度并避免随着时间推移出现聚类,我们开发了一种新颖的粒子平流策略,该策略在每个时间步产生近似均匀分布的场线。为了提高渲染性能,我们将渲染阶段与可视化方法的先前阶段解耦。这允许同时对多个场进行交互式探索,为更全面地分析流场奠定了基础。最终显示使用基于纹理的直接体绘制进行渲染。

相似文献

1
High-quality and interactive animations of 3D time-varying vector fields.
IEEE Trans Vis Comput Graph. 2006 Nov-Dec;12(6):1535-46. doi: 10.1109/TVCG.2006.95.
2
Visualization of vorticity and vortices in wall-bounded turbulent flows.
IEEE Trans Vis Comput Graph. 2007 Sep-Oct;13(5):1055-66. doi: 10.1109/TVCG.2007.1062.
3
Interactive visualization of three-dimensional vector fields with flexible appearance control.
IEEE Trans Vis Comput Graph. 2004 Jul-Aug;10(4):434-45. doi: 10.1109/TVCG.2004.13.
4
A particle system for interactive visualization of 3D flows.
IEEE Trans Vis Comput Graph. 2005 Nov-Dec;11(6):744-56. doi: 10.1109/TVCG.2005.87.
5
High-quality animation of 2D steady vector fields.
IEEE Trans Vis Comput Graph. 2004 Jan-Feb;10(1):2-14. doi: 10.1109/TVCG.2004.1260754.
6
Output-sensitive 3D line integral convolution.
IEEE Trans Vis Comput Graph. 2008 Jul-Aug;14(4):820-34. doi: 10.1109/TVCG.2008.25.
7
Interactive rendering of dynamic geometry.
IEEE Trans Vis Comput Graph. 2008 Jul-Aug;14(4):914-25. doi: 10.1109/TVCG.2008.35.
8
Virtual rheoscopic fluids.
IEEE Trans Vis Comput Graph. 2010 Jan-Feb;16(1):147-60. doi: 10.1109/TVCG.2009.46.
9
A coherent grid traversal approach to visualizing particle-based simulation data.
IEEE Trans Vis Comput Graph. 2007 Jul-Aug;13(4):758-68. doi: 10.1109/TVCG.2007.1059.
10
Animation of orthogonal texture patterns for vector field visualization.
IEEE Trans Vis Comput Graph. 2008 Jul-Aug;14(4):741-55. doi: 10.1109/TVCG.2008.36.

引用本文的文献

1
Effect of tonsillar herniation on cyclic CSF flow studied with computational flow analysis.
AJNR Am J Neuroradiol. 2011 Sep;32(8):1474-81. doi: 10.3174/ajnr.A2496. Epub 2011 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验