Das Rahul, Melacini Giuseppe
Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
J Biol Chem. 2007 Jan 5;282(1):581-93. doi: 10.1074/jbc.M607706200. Epub 2006 Oct 30.
The cAMP-binding domain (CBD) is an ancient and conserved regulatory motif that allosterically modulates the function of a group of diverse proteins, thereby translating the cAMP signal into a controlled biological response. The main receptor for cAMP in mammals is the ubiquitous regulatory (R) subunit of protein kinase A. Despite the recognized significant potential for pharmacological applications of CBDs, currently only one group of competitive inhibitor antagonists is known: the (R(p))-cAMPS family of phosphorothioate cAMP analogs, in which the equatorial exocyclic oxygen of cAMP is replaced by sulfur. It is also known that the diastereoisomer (S(p))-cAMPS with opposite phosphorous chirality is a cAMP agonist, but the molecular mechanism of action of these analogs is currently not fully understood. Previous crystallographic and unfolding investigations point to the enhanced CBD dynamics as a key determinant of antagonism. Here, we investigate the (R(p))- and (S(p))-cAMPS-bound states of R(CBD-A) using a comparative NMR approach that reveals a clear chemical shift and dynamic NMR signature, differentiating the (S(p))-cAMPS agonist from the (R(p))-cAMPS antagonist. Based on these data, we have proposed a model for the (R(p)/S(p))-cAMPS antagonism and agonism in terms of steric and electronic effects on two main allosteric relay sites, Ile(163) and Asp(170), respectively, affecting the stability of a ternary inhibitory complex formed by the effector ligand, the regulatory and the catalytic subunits of protein kinase A. The proposed model not only rationalizes the existing data on the phosphorothioate analogs, but it will also facilitate the design of novel cAMP antagonists and agonists.
环磷酸腺苷(cAMP)结合结构域(CBD)是一种古老且保守的调节基序,它通过变构调节一组不同蛋白质的功能,从而将cAMP信号转化为可控的生物学反应。哺乳动物中cAMP的主要受体是普遍存在的蛋白激酶A调节(R)亚基。尽管人们已经认识到CBD在药理学应用方面具有巨大潜力,但目前已知的只有一类竞争性抑制剂拮抗剂:硫代磷酸酯cAMP类似物的(R(p))-cAMPS家族,其中cAMP的赤道外环氧被硫取代。还已知具有相反磷手性的非对映异构体(S(p))-cAMPS是一种cAMP激动剂,但目前这些类似物的分子作用机制尚未完全了解。先前的晶体学和去折叠研究表明,增强的CBD动力学是拮抗作用的关键决定因素。在这里,我们使用比较核磁共振方法研究了R(CBD-A)与(R(p))-和(S(p))-cAMPS的结合状态,该方法揭示了清晰的化学位移和动态核磁共振特征,将(S(p))-cAMPS激动剂与(R(p))-cAMPS拮抗剂区分开来。基于这些数据,我们提出了一个关于(R(p)/S(p))-cAMPS拮抗和激动作用的模型,该模型分别从空间和电子效应方面对两个主要的变构中继位点Ile(163)和Asp(170)进行了阐述,这些效应影响了由效应配体、蛋白激酶A的调节亚基和催化亚基形成的三元抑制复合物的稳定性。所提出的模型不仅使关于硫代磷酸酯类似物的现有数据合理化,而且还将有助于设计新型的cAMP拮抗剂和激动剂。