Hashimi Saeed M, Wall Melisa K, Smith Andrew B, Maxwell Anthony, Birch Robert G
Botany Department--SIB, The University of Queensland, Brisbane 4072, Australia.
Antimicrob Agents Chemother. 2007 Jan;51(1):181-7. doi: 10.1128/AAC.00918-06. Epub 2006 Oct 30.
Xanthomonas albilineans produces a family of polyketide-peptide compounds called albicidins which are highly potent antibiotics and phytotoxins as a result of their inhibition of prokaryotic DNA replication. Here we show that albicidin is a potent inhibitor of the supercoiling activity of bacterial and plant DNA gyrases, with 50% inhibitory concentrations (40 to 50 nM) less than those of most coumarins and quinolones. Albicidin blocks the religation of the cleaved DNA intermediate during the gyrase catalytic sequence and also inhibits the relaxation of supercoiled DNA by gyrase and topoisomerase IV. Unlike the coumarins, albicidin does not inhibit the ATPase activity of gyrase. In contrast to the quinolones, the albicidin concentration required to stabilize the gyrase cleavage complex increases 100-fold in the absence of ATP. The slow peptide poisons microcin B17 and CcdB also access ATP-dependent conformations of gyrase to block religation, but in contrast to albicidin, they do not inhibit supercoiling under routine assay conditions. Some mutations in gyrA, known to confer high-level resistance to quinolones or CcdB, confer low-level resistance or hypersensitivity to albicidin in Escherichia coli. Within the albicidin biosynthesis region in X. albilineans is a gene encoding a pentapeptide repeat protein designated AlbG that binds to E. coli DNA gyrase and that confers a sixfold increase in the level of resistance to albicidin in vitro and in vivo. These results demonstrate that DNA gyrase is the molecular target of albicidin and that X. albilineans encodes a gyrase-interacting protein for self-protection. The novel features of the gyrase-albicidin interaction indicate the potential for the development of new antibacterial drugs.
白叶枯病菌(Xanthomonas albilineans)产生一类名为杀稻菌素的聚酮肽化合物,这类化合物由于能够抑制原核生物DNA复制,因而具有高效的抗菌活性和植物毒性。在此,我们发现杀稻菌素是细菌和植物DNA促旋酶超螺旋活性的强效抑制剂,其50%抑制浓度(40至50 nM)低于大多数香豆素和喹诺酮类药物。杀稻菌素在促旋酶催化过程中会阻断切割后的DNA中间体的重新连接,同时也会抑制促旋酶和拓扑异构酶IV介导的超螺旋DNA的松弛。与香豆素不同,杀稻菌素不会抑制促旋酶的ATP酶活性。与喹诺酮类药物相反,在没有ATP的情况下,稳定促旋酶切割复合物所需的杀稻菌素浓度会增加100倍。慢效肽毒素微小菌素B17和CcdB也会进入促旋酶的ATP依赖构象以阻断重新连接,但与杀稻菌素不同的是,在常规检测条件下它们不会抑制超螺旋。一些gyrA突变在大肠杆菌中已知可赋予对喹诺酮类药物或CcdB的高水平抗性,但对杀稻菌素仅赋予低水平抗性或超敏性。在白叶枯病菌的杀稻菌素生物合成区域内,有一个编码五肽重复蛋白的基因,命名为AlbG,它能与大肠杆菌DNA促旋酶结合,并在体外和体内使对白叶枯菌素的抗性水平提高六倍。这些结果表明,DNA促旋酶是杀稻菌素的分子靶点,并且白叶枯病菌编码一种与促旋酶相互作用的蛋白用于自我保护。促旋酶 - 杀稻菌素相互作用的新特性表明了开发新型抗菌药物的潜力。