Suppr超能文献

大肠杆菌周质硝酸还原酶系统的NapF蛋白:胞质定位及与催化亚基NapA相互作用的证明

The NapF protein of the Escherichia coli periplasmic nitrate reductase system: demonstration of a cytoplasmic location and interaction with the catalytic subunit, NapA.

作者信息

Nilavongse Arjaree, Brondijk T Harma C, Overton Tim W, Richardson David J, Leach Emily R, Cole Jeffrey A

机构信息

School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.

School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.

出版信息

Microbiology (Reading). 2006 Nov;152(Pt 11):3227-3237. doi: 10.1099/mic.0.29157-0.

Abstract

The periplasmic nitrate reductase of Escherichia coli is important during anaerobic growth in low-nitrate environments. The nap operon encoding this nitrate reductase comprises seven genes including a gene, napF, that encodes a putative cytoplasmic iron-sulphur protein of uncertain subcellular location and function. In this study, N-terminal sequence analysis, cell fractionation coupled with immunoblotting and construction of LacZ and PhoA fusion proteins were used together to establish that NapF is located in the E. coli cytoplasm. A bacterial two-hybrid protein-protein interaction system was used to demonstrate that NapF interacted in the cytoplasm with the terminal oxidoreductase NapA, but that it did not self-associate or interact with other electron-transport components of the Nap system, NapC, NapG or NapH, or with another cytoplasmic component, NapD. NapF, purified as a His(6)-tagged protein, exhibited spectral properties characteristic of an iron-sulphur protein. This protein was able to pull down NapA from soluble extracts of E. coli. A growth-based assay for NapF function in intact cell cultures was developed and applied to assess the effect of mutation of a number of conserved amino acids. It emerged that neither a highly conserved N-terminal double-arginine motif, nor a conserved proline motif, is essential for NapF-dependent growth. The combined data indicate that NapF plays one or more currently unidentified roles in the post-translational modification of NapA prior to the export of folded NapA via the twin-arginine translocation pathway into the periplasm.

摘要

大肠杆菌的周质硝酸还原酶在低硝酸盐环境下的厌氧生长过程中发挥着重要作用。编码这种硝酸还原酶的nap操纵子由七个基因组成,其中包括一个基因napF,该基因编码一种假定的细胞质铁硫蛋白,其亚细胞定位和功能尚不确定。在本研究中,通过N端序列分析、细胞分级分离结合免疫印迹以及构建LacZ和PhoA融合蛋白,共同确定了NapF位于大肠杆菌细胞质中。利用细菌双杂交蛋白-蛋白相互作用系统证明,NapF在细胞质中与末端氧化还原酶NapA相互作用,但它不会自我缔合,也不会与Nap系统的其他电子传递成分NapC、NapG或NapH相互作用,也不会与另一种细胞质成分NapD相互作用。作为His(6)标签蛋白纯化的NapF表现出铁硫蛋白的光谱特性。这种蛋白能够从大肠杆菌的可溶性提取物中沉淀出NapA。开发了一种基于生长的完整细胞培养物中NapF功能检测方法,并用于评估多个保守氨基酸突变的影响。结果表明,高度保守的N端双精氨酸基序和保守的脯氨酸基序对于依赖NapF的生长都不是必需的。综合数据表明,NapF在通过双精氨酸转运途径将折叠后的NapA输出到周质之前,在NapA的翻译后修饰中发挥一个或多个目前尚未确定的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验