Suppr超能文献

多种生物合成和摄取系统介导天蓝色链霉菌A3(2)和浅青紫链霉菌ATCC 23877中依赖铁载体的铁获取。

Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3(2) and Streptomyces ambofaciens ATCC 23877.

作者信息

Barona-Gómez Francisco, Lautru Sylvie, Francou Francois-Xavier, Leblond Pierre, Pernodet Jean-Luc, Challis Gregory L

机构信息

Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.

CNRS, Institut de Génétique et Microbiologie, UMR 8621, Université Paris-Sud 11, 91405 Orsay Cedex, France.

出版信息

Microbiology (Reading). 2006 Nov;152(Pt 11):3355-3366. doi: 10.1099/mic.0.29161-0.

Abstract

Siderophore-mediated iron acquisition has been well studied in many bacterial pathogens because it contributes to virulence. In contrast, siderophore-mediated iron acquisition by saprophytic bacteria has received relatively little attention. The independent identification of the des and cch gene clusters that direct production of the tris-hydroxamate ferric iron-chelators desferrioxamine E and coelichelin, respectively, which could potentially act as siderophores in the saprophyte Streptomyces coelicolor A3(2), has recently been reported. Here it is shown that the des cluster also directs production of desferrioxamine B in S. coelicolor and that very similar des and cch clusters direct production of desferrioxamines E and B, and coelichelin, respectively, in Streptomyces ambofaciens ATCC 23877. Sequence analyses of the des and cch clusters suggest that components of ferric-siderophore uptake systems are also encoded within each cluster. The construction and analysis of a series of mutants of S. coelicolor lacking just biosynthetic genes or both the biosynthetic and siderophore uptake genes from the des and cch clusters demonstrated that coelichelin and desferrioxamines E and B all function as siderophores in this organism and that at least one of these metabolites is required for growth under defined conditions even in the presence of significant quantities of ferric iron. These experiments also demonstrated that a third siderophore uptake system must be present in S. coelicolor, in addition to the two encoded within the cch and des clusters, which show selectivity for coelichelin and desferrioxamine E, respectively. The ability of the S. coelicolor mutants to utilize a range of exogenous xenosiderophores for iron acquisition was also examined, showing that the third siderophore-iron transport system has broad specificity for tris-hydroxamate-containing siderophores. Together, these results define a complex system of multiple biosynthetic and uptake pathways for siderophore-mediated iron acquisition in S. coelicolor and S. ambofaciens.

摘要

在许多细菌病原体中,铁载体介导的铁摄取已得到充分研究,因为它有助于致病。相比之下,腐生细菌通过铁载体介导的铁摄取受到的关注相对较少。最近有报道独立鉴定了des和cch基因簇,它们分别指导三异羟肟酸铁螯合剂去铁胺E和天蓝色菌素的产生,这两种螯合剂可能在腐生菌天蓝色链霉菌A3(2)中作为铁载体发挥作用。本文表明,des基因簇还指导天蓝色链霉菌中去铁胺B的产生,并且非常相似的des和cch基因簇分别指导浅青紫链霉菌ATCC 23877中去铁胺E和B以及天蓝色菌素的产生。des和cch基因簇的序列分析表明,铁-铁载体摄取系统的组分也编码在每个基因簇内。构建并分析了一系列天蓝色链霉菌突变体,这些突变体缺失来自des和cch基因簇的生物合成基因或生物合成基因与铁载体摄取基因,结果表明天蓝色菌素以及去铁胺E和B在该生物体中均作为铁载体发挥作用,并且即使在存在大量三价铁的情况下,这些代谢产物中的至少一种对于在特定条件下生长也是必需的。这些实验还表明,除了cch和des基因簇中编码的分别对天蓝色菌素和去铁胺E具有选择性的两个铁载体摄取系统外,天蓝色链霉菌中必定还存在第三个铁载体摄取系统。还研究了天蓝色链霉菌突变体利用一系列外源异源铁载体获取铁的能力,结果表明第三个铁载体-铁转运系统对含三异羟肟酸的铁载体具有广泛的特异性。总之,这些结果定义了一个复杂的系统,该系统包含天蓝色链霉菌和浅青紫链霉菌中铁载体介导的铁摄取的多种生物合成和摄取途径。

相似文献

5
Pseudomonas fluorescens pirates both ferrioxamine and ferricoelichelin siderophores from Streptomyces ambofaciens.
Appl Environ Microbiol. 2015 May 1;81(9):3132-41. doi: 10.1128/AEM.03520-14. Epub 2015 Feb 27.
7
Identification of genes involved in siderophore transport in Streptomyces coelicolor A3(2).
FEMS Microbiol Lett. 2006 Sep;262(1):57-64. doi: 10.1111/j.1574-6968.2006.00362.x.
8
Iron acquisition in the marine actinomycete genus Salinispora is controlled by the desferrioxamine family of siderophores.
FEMS Microbiol Lett. 2012 Oct;335(2):95-103. doi: 10.1111/j.1574-6968.2012.02641.x. Epub 2012 Aug 14.
9
Biosynthesis of novel desferrioxamine derivatives requires unprecedented crosstalk between separate NRPS-independent siderophore pathways.
Appl Environ Microbiol. 2024 Mar 20;90(3):e0211523. doi: 10.1128/aem.02115-23. Epub 2024 Feb 7.
10
Growth of desferrioxamine-deficient Streptomyces mutants through xenosiderophore piracy of airborne fungal contaminations.
FEMS Microbiol Ecol. 2015 Jul;91(7). doi: 10.1093/femsec/fiv080. Epub 2015 Jul 15.

引用本文的文献

3
Genome mining based on transcriptional regulatory networks uncovers a novel locus involved in desferrioxamine biosynthesis.
PLoS Biol. 2025 Jun 12;23(6):e3003183. doi: 10.1371/journal.pbio.3003183. eCollection 2025 Jun.
4
Xenosiderophores: bridging the gap in microbial iron acquisition strategies.
World J Microbiol Biotechnol. 2025 Feb 13;41(2):69. doi: 10.1007/s11274-025-04287-w.
5
Membrane-based preparation for mass spectrometry imaging of cultures of bacteria.
Anal Bioanal Chem. 2024 Dec;416(29):7161-7172. doi: 10.1007/s00216-024-05622-0. Epub 2024 Nov 4.
9
Genome reduction in DSM 365 for chassis development.
Front Bioeng Biotechnol. 2024 Mar 28;12:1378873. doi: 10.3389/fbioe.2024.1378873. eCollection 2024.
10
Biosynthesis of novel desferrioxamine derivatives requires unprecedented crosstalk between separate NRPS-independent siderophore pathways.
Appl Environ Microbiol. 2024 Mar 20;90(3):e0211523. doi: 10.1128/aem.02115-23. Epub 2024 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验