Suppr超能文献

海洋放线菌属 Salinispora 中的铁摄取受去铁胺类铁载体控制。

Iron acquisition in the marine actinomycete genus Salinispora is controlled by the desferrioxamine family of siderophores.

机构信息

Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, USA.

出版信息

FEMS Microbiol Lett. 2012 Oct;335(2):95-103. doi: 10.1111/j.1574-6968.2012.02641.x. Epub 2012 Aug 14.

Abstract

Many bacteria produce siderophores for sequestration of growth-essential iron. Analysis of the Salinispora genomes suggests that these marine actinomycetes support multiple hydroxamate- and phenolate-type siderophore pathways. We isolated and characterized desferrioxamines (DFOs) B and E from all three recognized Salinispora species and linked their biosyntheses in S. tropica CNB-440 and S. arenicola CNS-205 to the des locus through PCR-directed mutagenesis. Gene inactivation of the predicted iron-chelator biosynthetic loci sid2-4 did not abolish siderophore chemistry. Additionally, these pathways could not restore the native growth characteristics of the des mutants in iron-limited media, although differential iron-dependent regulation was observed for the yersiniabactin-like sid2 pathway. Consequently, this study indicates that DFOs are the primary siderophores in laboratory cultures of Salinispora.

摘要

许多细菌产生铁载体来螯合生长必需的铁。对盐单胞菌基因组的分析表明,这些海洋放线菌支持多种羟肟酸和酚盐型铁载体途径。我们从所有三种公认的盐单胞菌中分离和鉴定了去铁胺 (DFO) B 和 E,并通过 PCR 定向诱变将其在 S. tropica CNB-440 和 S. arenicola CNS-205 中的生物合成与 des 基因座联系起来。预测的铁螯合生物合成基因座 sid2-4 的基因失活并没有消除铁载体化学。此外,尽管观察到类似于耶尔森氏菌铁载体的 sid2 途径的差异铁依赖性调节,但这些途径不能恢复缺铁培养基中 des 突变体的天然生长特性。因此,本研究表明 DFO 是盐单胞菌实验室培养物中的主要铁载体。

相似文献

1
Iron acquisition in the marine actinomycete genus Salinispora is controlled by the desferrioxamine family of siderophores.
FEMS Microbiol Lett. 2012 Oct;335(2):95-103. doi: 10.1111/j.1574-6968.2012.02641.x. Epub 2012 Aug 14.
4
Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica.
Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10376-81. doi: 10.1073/pnas.0700962104. Epub 2007 Jun 11.
5
Function-related replacement of bacterial siderophore pathways.
ISME J. 2018 Feb;12(2):320-329. doi: 10.1038/ismej.2017.137. Epub 2017 Aug 15.
8
FW0622, a new siderophore isolated from marine sp. by genomic mining.
Nat Prod Res. 2020 Nov;34(21):3082-3088. doi: 10.1080/14786419.2019.1608541. Epub 2019 May 10.
9
Engineering Salinispora tropica for heterologous expression of natural product biosynthetic gene clusters.
Appl Microbiol Biotechnol. 2018 Oct;102(19):8437-8446. doi: 10.1007/s00253-018-9283-z. Epub 2018 Aug 13.

引用本文的文献

1
Strategies Used for the Discovery of New Microbial Metabolites with Antibiotic Activity.
Molecules. 2025 Jul 6;30(13):2868. doi: 10.3390/molecules30132868.
2
Novel XAD-LC/MS-FBMN-IMS Strategy for Screening Hydroxamate Siderophores: Siderome Analysis of the Pathogenic Bacterium .
Anal Chem. 2025 Jul 1;97(25):13376-13385. doi: 10.1021/acs.analchem.5c01687. Epub 2025 Jun 16.
3
An elastic siderophore synthetase and rubbery substrates assemble multimeric linear and macrocyclic hydroxamic acid metal chelators.
Chem Sci. 2024 Nov 25;16(5):2180-2190. doi: 10.1039/d4sc04888a. eCollection 2025 Jan 29.
4
Intermediates and shunt products of massiliachelin biosynthesis in sp. NR 4-1.
Beilstein J Org Chem. 2023 Jun 23;19:909-917. doi: 10.3762/bjoc.19.69. eCollection 2023.
5
Phytoplankton trigger the production of cryptic metabolites in the marine actinobacterium Salinispora tropica.
Microb Biotechnol. 2021 Jan;14(1):291-306. doi: 10.1111/1751-7915.13722. Epub 2020 Dec 5.
6
Comparative Genomics of Species to Reveal Diversity, Potential for Secondary Metabolites and Heavy Metal Resistance.
Front Microbiol. 2020 Aug 4;11:1869. doi: 10.3389/fmicb.2020.01869. eCollection 2020.
7
Reduction-dependent siderophore assimilation in a model pennate diatom.
Proc Natl Acad Sci U S A. 2019 Nov 19;116(47):23609-23617. doi: 10.1073/pnas.1907234116. Epub 2019 Nov 4.
8
The role of inter-species interactions in Salinispora specialized metabolism.
Microbiology (Reading). 2018 Jul;164(7):946-955. doi: 10.1099/mic.0.000679. Epub 2018 Jun 7.
10
Comparative transcriptomics as a guide to natural product discovery and biosynthetic gene cluster functionality.
Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):E11121-E11130. doi: 10.1073/pnas.1714381115. Epub 2017 Dec 11.

本文引用的文献

1
First draft genome sequence of a strain from the genus Citricoccus.
J Bacteriol. 2011 Nov;193(21):6092-3. doi: 10.1128/JB.06045-11.
2
Connecting chemotypes and phenotypes of cultured marine microbial assemblages by imaging mass spectrometry.
Angew Chem Int Ed Engl. 2011 Jun 20;50(26):5839-42. doi: 10.1002/anie.201101225. Epub 2011 May 13.
4
Marine isolate Citricoccus sp. KMM 3890 as a source of a cyclic siderophore nocardamine with antitumor activity.
Microbiol Res. 2011 Dec 20;166(8):654-61. doi: 10.1016/j.micres.2011.01.004. Epub 2011 Mar 3.
7
Siderophores from neighboring organisms promote the growth of uncultured bacteria.
Chem Biol. 2010 Mar 26;17(3):254-64. doi: 10.1016/j.chembiol.2010.02.010.
8
The zinc-responsive regulator Zur controls expression of the coelibactin gene cluster in Streptomyces coelicolor.
J Bacteriol. 2010 Jan;192(2):608-11. doi: 10.1128/JB.01022-09. Epub 2009 Nov 13.
9
The role of absC, a novel regulatory gene for secondary metabolism, in zinc-dependent antibiotic production in Streptomyces coelicolor A3(2).
Mol Microbiol. 2009 Dec;74(6):1427-44. doi: 10.1111/j.1365-2958.2009.06941.x. Epub 2009 Nov 10.
10
Genomic basis for natural product biosynthetic diversity in the actinomycetes.
Nat Prod Rep. 2009 Nov;26(11):1362-84. doi: 10.1039/b817069j. Epub 2009 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验