Suppr超能文献

一种用于氧化物负载金属纳米颗粒催化剂的通用合成策略。

A general synthetic strategy for oxide-supported metal nanoparticle catalysts.

作者信息

Zheng Nanfeng, Stucky Galen D

机构信息

Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.

出版信息

J Am Chem Soc. 2006 Nov 8;128(44):14278-80. doi: 10.1021/ja0659929.

Abstract

Despite recent exciting progress in catalysis by supported gold nanoparticles, there remains the formidable challenge of preparing supported gold catalysts that collectively incorporate precise control over factors such as size and size-distribution of the gold nanoparticles, homogeneous dispersion of the particles on the support, and the ability to utilize a wide range of supports that profoundly affect catalytic performance. Here, we describe a synthetic methodology that achieves these goals. In this strategy, weak interface interactions evenly deposit presynthesized organic-capped metal nanoparticles on oxide supports. The homogeneous dispersion of nanoparticles on oxides is then locked in place, without aggregation, through careful calcination. The approach takes advantage of recent advances in the synthesis of metal and oxide nanomaterials and helps to bring together these two classes of materials for catalysis applications. An important feature is that the strategy allows metal nanoparticles to be well dispersed on a variety of oxides with few restrictions on their physical and chemical properties. Following this synthetic procedure, we have successfully developed efficient gold catalysts for green chemistry processes, such as the production of ethyl acetate from the selective oxidation of ethanol by oxygen at 100 degrees C.

摘要

尽管负载型金纳米颗粒催化领域近来取得了令人振奋的进展,但制备负载型金催化剂仍面临巨大挑战,这些催化剂需要综合精确控制诸多因素,如金纳米颗粒的尺寸和尺寸分布、颗粒在载体上的均匀分散,以及利用对催化性能有深远影响的多种载体的能力。在此,我们描述了一种实现这些目标的合成方法。在该策略中,弱界面相互作用将预先合成的有机包覆金属纳米颗粒均匀沉积在氧化物载体上。然后,通过仔细煅烧,纳米颗粒在氧化物上的均匀分散得以固定,不会发生聚集。该方法利用了金属和氧化物纳米材料合成方面的最新进展,并有助于将这两类材料结合用于催化应用。一个重要特点是,该策略使金属纳米颗粒能够很好地分散在各种氧化物上,对其物理和化学性质的限制很少。按照这个合成程序,我们成功开发了用于绿色化学过程的高效金催化剂,例如在100摄氏度下通过氧气对乙醇进行选择性氧化生产乙酸乙酯。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验