通过从离散刚体变换中插值三维旋转和平移实现自动弹性图像配准。

Automatic elastic image registration by interpolation of 3D rotations and translations from discrete rigid-body transformations.

作者信息

Walimbe Vivek, Shekhar Raj

机构信息

Biomedical Engineering Department, The Ohio State University, 1080 Carmack Road, Columbus, OH 43210, USA.

出版信息

Med Image Anal. 2006 Dec;10(6):899-914. doi: 10.1016/j.media.2006.09.002. Epub 2006 Oct 31.

Abstract

We present an algorithm for automatic elastic registration of three-dimensional (3D) medical images. Our algorithm initially recovers the global spatial mismatch between the reference and floating images, followed by hierarchical octree-based subdivision of the reference image and independent registration of the floating image with the individual subvolumes of the reference image at each hierarchical level. Global as well as local registrations use the six-parameter full rigid-body transformation model and are based on maximization of normalized mutual information (NMI). To ensure robustness of the subvolume registration with low voxel counts, we calculate NMI using a combination of current and prior mutual histograms. To generate a smooth deformation field, we perform direct interpolation of six-parameter rigid-body subvolume transformations obtained at the last subdivision level. Our interpolation scheme involves scalar interpolation of the 3D translations and quaternion interpolation of the 3D rotational pose. We analyzed the performance of our algorithm through experiments involving registration of synthetically deformed computed tomography (CT) images. Our algorithm is general and can be applied to image pairs of any two modalities of most organs. We have demonstrated successful registration of clinical whole-body CT and positron emission tomography (PET) images using this algorithm. The registration accuracy for this application was evaluated, based on validation using expert-identified anatomical landmarks in 15 CT-PET image pairs. The algorithm's performance was comparable to the average accuracy observed for three expert-determined registrations in the same 15 image pairs.

摘要

我们提出了一种用于三维(3D)医学图像自动弹性配准的算法。我们的算法首先恢复参考图像和浮动图像之间的全局空间失配,然后对参考图像进行基于层次八叉树的细分,并在每个层次级别上对浮动图像与参考图像的各个子体积进行独立配准。全局和局部配准均使用六参数全刚体变换模型,并基于归一化互信息(NMI)的最大化。为确保在低体素数量下子体积配准的鲁棒性,我们使用当前和先前互直方图的组合来计算NMI。为生成平滑的变形场,我们对在最后细分级别获得的六参数刚体子体积变换进行直接插值。我们的插值方案涉及三维平移的标量插值和三维旋转姿态的四元数插值。我们通过涉及合成变形计算机断层扫描(CT)图像配准的实验分析了算法的性能。我们的算法具有通用性,可应用于大多数器官的任意两种模态的图像对。我们已使用该算法成功配准了临床全身CT和正电子发射断层扫描(PET)图像。基于对15对CT-PET图像对中专家识别的解剖标志的验证,评估了该应用的配准准确性。该算法的性能与在相同的15对图像中由三位专家确定的配准所观察到的平均准确性相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索