Suppr超能文献

在刚性图像配准中去除插值和重采样伪影。

On removing interpolation and resampling artifacts in rigid image registration.

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.

出版信息

IEEE Trans Image Process. 2013 Feb;22(2):816-27. doi: 10.1109/TIP.2012.2224356. Epub 2012 Oct 11.

Abstract

We show that image registration using conventional interpolation and summation approximations of continuous integrals can generally fail because of resampling artifacts. These artifacts negatively affect the accuracy of registration by producing local optima, altering the gradient, shifting the global optimum, and making rigid registration asymmetric. In this paper, after an extensive literature review, we demonstrate the causes of the artifacts by comparing inclusion and avoidance of resampling analytically. We show the sum-of-squared-differences cost function formulated as an integral to be more accurate compared with its traditional sum form in a simple case of image registration. We then discuss aliasing that occurs in rotation, which is due to the fact that an image represented in the Cartesian grid is sampled with different rates in different directions, and propose the use of oscillatory isotropic interpolation kernels, which allow better recovery of true global optima by overcoming this type of aliasing. Through our experiments on brain, fingerprint, and white noise images, we illustrate the superior performance of the integral registration cost function in both the Cartesian and spherical coordinates, and also validate the introduced radial interpolation kernel by demonstrating the improvement in registration.

摘要

我们表明,由于重采样伪影,使用传统插值和连续积分求和近似的图像配准通常会失败。这些伪影通过产生局部最优、改变梯度、移动全局最优和使刚体配准不对称,对配准的准确性产生负面影响。在本文中,经过广泛的文献回顾,我们通过分析比较包含和避免重采样来展示伪影的原因。我们展示了平方和差代价函数作为积分的形式比其在图像配准的简单情况下的传统求和形式更准确。然后,我们讨论了由于笛卡尔网格中表示的图像在不同方向上以不同的速率采样而导致的旋转中的混叠,并提出使用振荡各向同性插值核,通过克服这种类型的混叠,允许更好地恢复真正的全局最优。通过对脑、指纹和白噪声图像的实验,我们说明了积分配准代价函数在笛卡尔和球坐标中的优越性能,并且通过证明配准的改进,验证了所引入的径向插值核的有效性。

相似文献

1
On removing interpolation and resampling artifacts in rigid image registration.在刚性图像配准中去除插值和重采样伪影。
IEEE Trans Image Process. 2013 Feb;22(2):816-27. doi: 10.1109/TIP.2012.2224356. Epub 2012 Oct 11.
2
Polyphase antialiasing in resampling of images.图像重采样中的多相抗混叠
IEEE Trans Image Process. 2005 Nov;14(11):1876-89. doi: 10.1109/tip.2005.854493.
5
LAPNet: Non-Rigid Registration Derived in k-Space for Magnetic Resonance Imaging.LAPNet:基于 k 空间的磁共振成像的非刚性配准。
IEEE Trans Med Imaging. 2021 Dec;40(12):3686-3697. doi: 10.1109/TMI.2021.3096131. Epub 2021 Nov 30.

引用本文的文献

7
Multimodal Image Registration through Simultaneous Segmentation.通过同步分割实现多模态图像配准
IEEE Signal Process Lett. 2017 Nov;24(11):1661-1665. doi: 10.1109/LSP.2017.2754263. Epub 2017 Sep 19.
9
Mid-space-independent deformable image registration.与空间无关的可变形图像配准
Neuroimage. 2017 May 15;152:158-170. doi: 10.1016/j.neuroimage.2017.02.055. Epub 2017 Feb 24.
10
Mid-Space-Independent Symmetric Data Term for Pairwise Deformable Image Registration.用于成对可变形图像配准的空间无关对称数据项
Med Image Comput Comput Assist Interv. 2015 Oct;9350:263-271. doi: 10.1007/978-3-319-24571-3_32. Epub 2015 Nov 20.

本文引用的文献

1
Steerable pyramids and tight wavelet frames in L2(R(d)).可操纵的金字塔和 L2(R(d)) 中的紧小波框架。
IEEE Trans Image Process. 2011 Oct;20(10):2705-21. doi: 10.1109/TIP.2011.2138147. Epub 2011 Apr 7.
2
Highly accurate inverse consistent registration: a robust approach.高度精确的反向一致配准:一种稳健的方法。
Neuroimage. 2010 Dec;53(4):1181-96. doi: 10.1016/j.neuroimage.2010.07.020. Epub 2010 Jul 14.
4
Spherical demons: fast diffeomorphic landmark-free surface registration.球形恶魔:快速的非刚性地标自由表面配准。
IEEE Trans Med Imaging. 2010 Mar;29(3):650-68. doi: 10.1109/TMI.2009.2030797. Epub 2009 Aug 25.
6
Interpolation artifacts in sub-pixel image registration.亚像素图像配准中的插值伪影。
IEEE Trans Image Process. 2009 Feb;18(2):333-45. doi: 10.1109/TIP.2008.2008081. Epub 2008 Dec 22.
8
Continuous sampling in mutual-information registration.互信息配准中的连续采样。
IEEE Trans Image Process. 2008 May;17(5):823-6. doi: 10.1109/TIP.2008.920738.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验