文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

A review of deep learning approaches for multimodal image segmentation of liver cancer.

作者信息

Wu Chaopeng, Chen Qiyao, Wang Haoyu, Guan Yu, Mian Zhangyang, Huang Cong, Ruan Changli, Song Qibin, Jiang Hao, Pan Jinghui, Li Xiangpan

机构信息

Department of Radiation Oncology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China.

School of Electronic Information, Wuhan University, Wuhan, Hubei, China.

出版信息

J Appl Clin Med Phys. 2024 Dec;25(12):e14540. doi: 10.1002/acm2.14540. Epub 2024 Oct 7.


DOI:10.1002/acm2.14540
PMID:39374312
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11633801/
Abstract

This review examines the recent developments in deep learning (DL) techniques applied to multimodal fusion image segmentation for liver cancer. Hepatocellular carcinoma is a highly dangerous malignant tumor that requires accurate image segmentation for effective treatment and disease monitoring. Multimodal image fusion has the potential to offer more comprehensive information and more precise segmentation, and DL techniques have achieved remarkable progress in this domain. This paper starts with an introduction to liver cancer, then explains the preprocessing and fusion methods for multimodal images, then explores the application of DL methods in this area. Various DL architectures such as convolutional neural networks (CNN) and U-Net are discussed and their benefits in multimodal image fusion segmentation. Furthermore, various evaluation metrics and datasets currently used to measure the performance of segmentation models are reviewed. While reviewing the progress, the challenges of current research, such as data imbalance, model generalization, and model interpretability, are emphasized and future research directions are suggested. The application of DL in multimodal image segmentation for liver cancer is transforming the field of medical imaging and is expected to further enhance the accuracy and efficiency of clinical decision making. This review provides useful insights and guidance for medical practitioners.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/454d/11633801/6c0601af6a14/ACM2-25-e14540-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/454d/11633801/f4298c131102/ACM2-25-e14540-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/454d/11633801/9e359ed5ba13/ACM2-25-e14540-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/454d/11633801/24fec825f7a9/ACM2-25-e14540-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/454d/11633801/fd72fd03b50a/ACM2-25-e14540-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/454d/11633801/6c0601af6a14/ACM2-25-e14540-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/454d/11633801/f4298c131102/ACM2-25-e14540-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/454d/11633801/9e359ed5ba13/ACM2-25-e14540-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/454d/11633801/24fec825f7a9/ACM2-25-e14540-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/454d/11633801/fd72fd03b50a/ACM2-25-e14540-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/454d/11633801/6c0601af6a14/ACM2-25-e14540-g002.jpg

相似文献

[1]
A review of deep learning approaches for multimodal image segmentation of liver cancer.

J Appl Clin Med Phys. 2024-12

[2]
Brain tumor segmentation with deep learning: Current approaches and future perspectives.

J Neurosci Methods. 2025-6

[3]
Influence of early through late fusion on pancreas segmentation from imperfectly registered multimodal magnetic resonance imaging.

J Med Imaging (Bellingham). 2025-3

[4]
A Systematic Review and Identification of the Challenges of Deep Learning Techniques for Undersampled Magnetic Resonance Image Reconstruction.

Sensors (Basel). 2024-1-24

[5]
Cell Segmentation With Globally Optimized Boundaries (CSGO): A Deep Learning Pipeline for Whole-Cell Segmentation in Hematoxylin-and-Eosin-Stained Tissues.

Lab Invest. 2025-2

[6]
Advancements in automated nuclei segmentation for histopathology using you only look once-driven approaches: A systematic review.

Comput Biol Med. 2025-5

[7]
A systematic review on feature extraction methods and deep learning models for detection of cancerous lung nodules at an early stage -the recent trends and challenges.

Biomed Phys Eng Express. 2024-11-20

[8]
Implementation of biomedical segmentation for brain tumor utilizing an adapted U-net model.

Comput Biol Med. 2025-8

[9]
Radiomics and deep learning characterisation of liver malignancies in CT images - A systematic review.

Comput Biol Med. 2025-8

[10]
Multi-sequence brain tumor segmentation boosted by deep semantic features.

Med Phys. 2025-4-28

本文引用的文献

[1]
A deep learning approach for acute liver failure prediction with combined fully connected and convolutional neural networks.

Technol Health Care. 2024

[2]
Segmentation of liver and liver lesions using deep learning.

Phys Eng Sci Med. 2024-6

[3]
A transformer-based deep learning approach for fairly predicting post-liver transplant risk factors.

J Biomed Inform. 2024-1

[4]
MANet: a multi-attention network for automatic liver tumor segmentation in computed tomography (CT) imaging.

Sci Rep. 2023-11-16

[5]
Multimodal deep learning for liver cancer applications: a scoping review.

Front Artif Intell. 2023-10-27

[6]
Segment anything model for medical image analysis: An experimental study.

Med Image Anal. 2023-10

[7]
Clinical applications of artificial intelligence in liver imaging.

Radiol Med. 2023-6

[8]
Transformer based Generative Adversarial Network for Liver Segmentation.

Proc Int Conf Image Anal Process. 2022-5

[9]
The Liver Tumor Segmentation Benchmark (LiTS).

Med Image Anal. 2023-2

[10]
Multi-modal contrastive mutual learning and pseudo-label re-learning for semi-supervised medical image segmentation.

Med Image Anal. 2023-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索