Shimizu Takashi, Bae Young-Ki, Hibi Masahiko
Laboratory for Vertebrate Axis Formation, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan.
Development. 2006 Dec;133(23):4709-19. doi: 10.1242/dev.02660. Epub 2006 Nov 1.
Fibroblast growth factor (Fgf) and retinoic acid (RA) signals control the formation and anteroposterior patterning of posterior hindbrain. They are also involved in development processes in other regions of the embryo. Therefore, responsiveness to Fgf and RA signals must be controlled in a context-dependent manner. Inhibiting the caudal-related genes cdx1a and cdx4 in zebrafish embryos caused ectopic expression of genes that are normally expressed in the posterior hindbrain and anterior spinal cord, and ectopic formation of the hindbrain motor and commissure neurons in the posteriormost neural tissue. Combinational marker analyses suggest mirror-image duplication in the Cdx1a/4-defective embryos, and cell transplantation analysis further revealed that Cdx1a and Cdx4 repress a posterior hindbrain-specific gene expression cell-autonomously in the posterior neural tissue. Expression of fgfs and retinaldehyde dehydrogenase 2 suggested that in the Cdx1a/4-defective embryos, the Fgf and RA signaling activities overlap in the posterior body and display opposing gradients, compared with those in the hindbrain region. We found that Fgf and RA signals were required for ectopic expression. Expression of the posterior hox genes hoxb7a, hoxa9a or hoxb9a, which function downstream of Cdx1a/4, or activator fusion genes of hoxa9a or hoxb9a (VP16-hoxa9a, VP16-hoxb9a) suppressed this loss-of-function phenotype. These data suggest that Cdx suppresses the posterior hindbrain fate through regulation of the posterior hox genes; the posterior Hox proteins function as transcriptional activators and indirectly repress the ectopic expression of the posterior hindbrain genes in the posterior neural tissue. Our results indicate that the Cdx-Hox code modifies tissue competence to respond to Fgfs and RA in neural tissue.
成纤维细胞生长因子(Fgf)和视黄酸(RA)信号控制后脑后部的形成和前后模式形成。它们也参与胚胎其他区域的发育过程。因此,对Fgf和RA信号的反应性必须以上下文依赖的方式进行控制。在斑马鱼胚胎中抑制尾相关基因cdx1a和cdx4会导致通常在后脑后部和脊髓前部表达的基因异位表达,以及在最后部神经组织中后脑运动和连合神经元的异位形成。组合标记分析表明Cdx1a/4缺陷胚胎中存在镜像重复,细胞移植分析进一步表明Cdx1a和Cdx4在后侧神经组织中自主抑制后脑后部特异性基因的表达。fgfs和视黄醛脱氢酶2的表达表明,在Cdx1a/4缺陷胚胎中,与后脑区域相比,Fgf和RA信号活性在后侧身体中重叠并显示相反的梯度。我们发现Fgf和RA信号是异位表达所必需的。在Cdx1a/4下游起作用的后hox基因hoxb7a、hoxa9a或hoxb9a,或hoxa9a或hoxb9a的激活融合基因(VP16-hoxa9a、VP16-hoxb9a)的表达抑制了这种功能丧失表型。这些数据表明,Cdx通过调节后hox基因抑制后脑后部命运;后Hox蛋白作为转录激活因子,间接抑制后神经组织中后脑后部基因的异位表达。我们的结果表明,Cdx-Hox编码改变了神经组织对Fgfs和RA的反应能力。