Section of Developmental Biology, Department of Pediatrics, University of Colorado Medical School, 12801 E. 17th Avenue, Aurora, CO, 80045, USA.
Department of Science and Math, Northern State University, 1200 S. Jay St, Aberdeen, SD, 57401, USA.
Neural Dev. 2024 Jul 5;19(1):12. doi: 10.1186/s13064-024-00189-z.
A key step in nervous system development involves the coordinated control of neural progenitor specification and positioning. A long-standing model for the vertebrate CNS postulates that transient anatomical compartments - known as neuromeres - function to position neural progenitors along the embryonic anteroposterior neuraxis. Such neuromeres are apparent in the embryonic hindbrain - that contains six rhombomeres with morphologically apparent boundaries - but other neuromeres lack clear morphological boundaries and have instead been defined by different criteria, such as differences in gene expression patterns and the outcomes of transplantation experiments. Accordingly, the caudal hindbrain (CHB) posterior to rhombomere (r) 6 has been variably proposed to contain from two to five 'pseudo-rhombomeres', but the lack of comprehensive molecular data has precluded a detailed definition of such structures.
We used single-cell Multiome analysis, which allows simultaneous characterization of gene expression and chromatin state of individual cell nuclei, to identify and characterize CHB progenitors in the developing zebrafish CNS.
We identified CHB progenitors as a transcriptionally distinct population, that also possesses a unique profile of accessible transcription factor binding motifs, relative to both r6 and the spinal cord. This CHB population can be subdivided along its dorsoventral axis based on molecular characteristics, but we do not find any molecular evidence that it contains multiple pseudo-rhombomeres. We further observe that the CHB is closely related to r6 at the earliest embryonic stages, but becomes more divergent over time, and that it is defined by a unique gene regulatory network.
We conclude that the early CHB represents a single neuromere compartment that cannot be molecularly subdivided into pseudo-rhombomeres and that it may share an embryonic origin with r6.
神经系统发育的一个关键步骤涉及到神经祖细胞的规范和定位的协调控制。脊椎动物中枢神经系统的一个长期模型假设,短暂的解剖隔室 - 称为神经节 - 沿着胚胎前后轴定位神经祖细胞。这样的神经节在胚胎后脑 - 包含六个具有明显边界的菱脑节 - 中是明显的,但其他神经节缺乏明显的形态边界,而是通过不同的标准来定义,例如基因表达模式的差异和移植实验的结果。因此,菱脑节 6 之后的尾侧后脑(CHB)被不同地提出包含两个到五个“假菱脑节”,但缺乏全面的分子数据使得这些结构无法得到详细的定义。
我们使用单细胞多组学分析,允许同时对单个细胞核的基因表达和染色质状态进行特征化,以鉴定和描述发育中的斑马鱼中枢神经系统中的 CHB 祖细胞。
我们将 CHB 祖细胞鉴定为一个转录上明显不同的群体,与 r6 和脊髓相比,它还具有独特的可及转录因子结合基序特征。该 CHB 群体可以沿着其背腹轴基于分子特征进行细分,但我们没有发现任何分子证据表明它包含多个假菱脑节。我们进一步观察到,CHB 在最早的胚胎阶段与 r6 密切相关,但随着时间的推移变得更加不同,并且它由一个独特的基因调控网络定义。
我们得出结论,早期的 CHB 代表一个单一的神经节隔室,不能在分子上细分为假菱脑节,并且它可能与 r6 具有共同的胚胎起源。