Suppr超能文献

时间平方:系统发育树上的重复测量

Time squared: repeated measures on phylogenies.

作者信息

Guo Hua, Weiss Robert E, Gu Xun, Suchard Marc A

机构信息

Department of Biostatistics, School of Public Health, University of California, Los Angeles, USA.

出版信息

Mol Biol Evol. 2007 Feb;24(2):352-62. doi: 10.1093/molbev/msl165. Epub 2006 Nov 1.

Abstract

Studies of gene expression profiles in response to external perturbation generate repeated measures data that generally follow nonlinear curves. To explore the evolution of such profiles across a gene family, we introduce phylogenetic repeated measures (PR) models. These models draw strength from 2 forms of correlation in the data. Through gene duplication, the family's evolutionary relatedness induces the first form. The second is the correlation across time points within taxonic units, individual genes in this example. We borrow a Brownian diffusion process along a given phylogenetic tree to account for the relatedness and co-opt a repeated measures framework to model the latter. Through simulation studies, we demonstrate that repeated measures models outperform the previously available approaches that consider the longitudinal observations or their differences as independent and identically distributed by using deviance information criteria as Bayesian model selection tools; PR models that borrow phylogenetic information also perform better than nonphylogenetic repeated measures models when appropriate. We then analyze the evolution of gene expression in the yeast kinase family using splines to estimate nonlinear behavior across 3 perturbation experiments. Again, the PR models outperform previous approaches and afford the prediction of ancestral expression profiles. To demonstrate PR model applicability more generally, we conclude with a short examination of variation in brain development across 4 primate species.

摘要

针对外部扰动的基因表达谱研究产生的重复测量数据通常遵循非线性曲线。为了探究此类谱在一个基因家族中的演变,我们引入了系统发育重复测量(PR)模型。这些模型从数据中的两种相关形式汲取力量。通过基因复制,家族的进化相关性引发了第一种形式。第二种是分类单元内各时间点之间的相关性,在此例中为各个基因。我们借助沿给定系统发育树的布朗扩散过程来解释这种相关性,并采用重复测量框架对后者进行建模。通过模拟研究,我们证明,使用偏差信息准则作为贝叶斯模型选择工具时,重复测量模型优于之前将纵向观测值或其差异视为独立同分布的可用方法;在适当情况下,借助系统发育信息的PR模型也比非系统发育重复测量模型表现更好。然后,我们使用样条估计在3个扰动实验中的非线性行为,分析酵母激酶家族中基因表达的演变。同样,PR模型优于之前的方法,并能预测祖先的表达谱。为了更全面地证明PR模型的适用性,我们最后简要考察了4种灵长类动物大脑发育的差异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验