Vrancken Bram, Lemey Philippe, Rambaut Andrew, Bedford Trevor, Longdon Ben, Günthard Huldrych F, Suchard Marc A
Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium.
Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK ; Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.
Methods Ecol Evol. 2015 Jan 1;6(1):67-82. doi: 10.1111/2041-210X.12293.
Phylogenetic signal quantifies the degree to which resemblance in continuously-valued traits reflects phylogenetic relatedness. Measures of phylogenetic signal are widely used in ecological and evolutionary research, and are recently gaining traction in viral evolutionary studies. Standard estimators of phylogenetic signal frequently condition on data summary statistics of the repeated trait observations and fixed phylogenetics trees, resulting in information loss and potential bias. To incorporate the observation process and phylogenetic uncertainty in a model-based approach, we develop a novel Bayesian inference method to simultaneously estimate the evolutionary history and phylogenetic signal from molecular sequence data and repeated multivariate traits. Our approach builds upon a phylogenetic diffusion framework that model continuous trait evolution as a Brownian motion process and incorporates Pagel's transformation parameter to estimate dependence among traits. We provide a computationally efficient inference implementation in the BEAST software package. We evaluate the synthetic performance of the Bayesian estimator of phylogenetic signal against standard estimators, and demonstrate the use of our coherent framework to address several virus-host evolutionary questions, including virulence heritability for HIV, antigenic evolution in influenza and HIV, and Drosophila sensitivity to sigma virus infection. Finally, we discuss model extensions that will make useful contributions to our flexible framework for simultaneously studying sequence and trait evolution.
系统发育信号量化了连续值性状的相似性反映系统发育相关性的程度。系统发育信号的度量在生态和进化研究中被广泛使用,并且最近在病毒进化研究中越来越受到关注。系统发育信号的标准估计器通常依赖于重复性状观测的数据汇总统计量和固定的系统发育树,从而导致信息丢失和潜在偏差。为了在基于模型的方法中纳入观测过程和系统发育不确定性,我们开发了一种新颖的贝叶斯推断方法,以同时从分子序列数据和重复的多变量性状中估计进化历史和系统发育信号。我们的方法基于系统发育扩散框架,该框架将连续性状进化建模为布朗运动过程,并纳入佩格尔变换参数以估计性状之间的依赖性。我们在BEAST软件包中提供了一种计算效率高的推断实现。我们评估了系统发育信号的贝叶斯估计器相对于标准估计器的综合性能,并展示了我们的连贯框架在解决几个病毒-宿主进化问题中的应用,包括HIV的毒力遗传性、流感和HIV的抗原进化以及果蝇对西格玛病毒感染的敏感性。最后,我们讨论了模型扩展,这些扩展将为我们同时研究序列和性状进化的灵活框架做出有益贡献。