Suppr超能文献

表达谱分析确定了肺鳞状细胞癌中的一种复发特征。

Expression profiling defines a recurrence signature in lung squamous cell carcinoma.

作者信息

Larsen Jill Everland, Pavey Sandra Jane, Passmore Linda Hazel, Bowman Rayleen, Clarke Belinda Edith, Hayward Nicholas Kim, Fong Kwun Meng

机构信息

Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, 4032, Australia.

出版信息

Carcinogenesis. 2007 Mar;28(3):760-6. doi: 10.1093/carcin/bgl207. Epub 2006 Nov 1.

Abstract

Lung cancer remains the leading cause of cancer death worldwide. Overall 5-year survival is approximately 10-15% and despite curative intent surgery, treatment failure is primarily due to recurrent disease. Conventional prognostic markers are unable to determine which patients with completely resected disease within each stage group are likely to relapse. To identify a gene signature associated with recurrent squamous cell carcinoma (SCC) of lung, we analyzed primary tumor gene expression for a total of 51 SCCs (Stages I-III) on 22 323 element microarrays, comparing expression profiles for individuals who remained disease-free for a minimum of 36 months with those from individuals whose disease recurred within 18 months of complete resection. Cox proportional hazards modeling with leave-one-out cross-validation identified a 71-gene signature capable of predicting the likelihood of tumor recurrence and a 79-gene signature predictive for cancer-related death. These two signatures were pooled to generate a 111-gene signature which achieved an overall predictive accuracy for disease recurrence of 72% (77% sensitivity, 67% specificity) in an independent set of 58 (Stages I-III SCCs). This signature also predicted differences in survival [log-rank P=0.0008; hazard ratio (HR), 3.8; 95% confidence interval (CI), 1.6-8.7], and was superior to conventional prognostic markers such as TNM stage or N stage in predicting patient outcome. Genome-wide profiling has revealed a distinct gene-expression profile for recurrent lung SCC which may be clinically useful as a prognostic tool.

摘要

肺癌仍是全球癌症死亡的主要原因。总体5年生存率约为10%-15%,尽管手术具有治愈意图,但治疗失败主要是由于疾病复发。传统的预后标志物无法确定每个分期组中疾病完全切除的患者哪些可能复发。为了鉴定与肺复发性鳞状细胞癌(SCC)相关的基因特征,我们在22323个元件的微阵列上分析了总共51例SCC(I-III期)的原发性肿瘤基因表达,比较了至少36个月无疾病个体与完全切除后18个月内疾病复发个体的表达谱。采用留一法交叉验证的Cox比例风险模型确定了一个能够预测肿瘤复发可能性的71基因特征和一个预测癌症相关死亡的79基因特征。将这两个特征合并以生成一个111基因特征,在一组独立的58例(I-III期SCC)中,该特征对疾病复发的总体预测准确率达到72%(敏感性77%,特异性67%)。该特征还预测了生存差异[对数秩P=0.0008;风险比(HR),3.8;95%置信区间(CI),1.6-8.7],并且在预测患者预后方面优于传统的预后标志物,如TNM分期或N分期。全基因组分析揭示了复发性肺SCC独特的基因表达谱,这可能在临床上作为一种预后工具很有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验