Division of Thoracic Surgery, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
Cancer Res. 2010 Jan 1;70(1):36-45. doi: 10.1158/0008-5472.CAN-09-3153. Epub 2009 Dec 22.
Prognostic markers that can predict the relapse of localized non-small cell lung cancer (NSCLC) have yet to be defined. We surveyed expression profiles of microRNA (miRNA) in stage I NSCLC to identify patterns that might predict recurrence after surgical resection of this common deadly cancer. Small RNAs extracted from formalin-fixed and paraffin-embedded tissues were hybridized to locked nucleic acid probes against 752 human miRNAs (representing 82% of the miRNAs in the miRBase 13.0 database) to obtain expression profiles for 37 cases with recurrence and 40 cases without recurrence (with clinical follow-up for at least 32 months). Differential expression between the two case groups was detected for 49% of the miRNAs (Wilcoxon rank sum test; P<0.01). The performance of expression profiles at differentiating the two case groups was assessed by leave-one-out and Monte Carlo cross-validations. In leave-one-out cross-validation using support vector machines- or top-scoring gene pair classifier methods, which looked for six- or two-miRNA-based classifiers, the identified miRNA expression pattern predicted recurrence with an accuracy of 70% and 83%, and hazard ratio of 3.6 [95% confidence interval (95% CI), 1.8-7.1] and 9.0 (95% CI, 4.4-18.2), respectively. Mean accuracy in Monte Carlo cross-validation using 1,000 random 60-17 splits was 69% (95% CI, 68-70) and 72% (95% CI, 71-72), respectively. The specific miRNAs mir-200b*, mir-30c-1*, mir-510, mir-630, mir-657, and mir-146b-3p and mir-124*, mir-585, and mir-708, respectively, represented most commonly among the 1,000 classifiers identified in Monte Carlo cross-validation by the two methods. MiRNAs mir-488, mir-503, and mir-647 were identified as potential reference miRNAs for future studies, based on the stability of their expression patterns across the 77 cases and the two case-groups. Our findings reinforce efforts to profile miRNA expression patterns for better prognostication of stage I NSCLC.
目前还没有可以预测局限性非小细胞肺癌(NSCLC)复发的预后标志物。我们调查了 I 期 NSCLC 中 microRNA(miRNA)的表达谱,以确定可能预测这种常见致命性癌症手术后复发的模式。从小鼠 RNA 提取的小 RNA(miRNA)从福尔马林固定石蜡包埋组织中提取出来,并与针对 752 个人类 miRNA 的锁定核酸探针杂交(代表 miRBase 13.0 数据库中 82%的 miRNA),以获得 37 例复发和 40 例无复发(至少 32 个月的临床随访)的病例的表达谱。两个病例组之间的差异表达在 49%的 miRNA 中被检测到(Wilcoxon 秩和检验;P<0.01)。使用支持向量机或得分最高的基因对分类器方法通过留一法和蒙特卡罗交叉验证来评估表达谱在区分两个病例组中的性能。在使用支持向量机或得分最高的基因对分类器方法的留一法交叉验证中,寻找基于六或两个 miRNA 的分类器,鉴定的 miRNA 表达模式以 70%和 83%的准确性和 3.6 [95%置信区间(95%CI),1.8-7.1]和 9.0(95%CI,4.4-18.2)的危险比预测复发。使用 1000 个随机 60-17 个分裂的蒙特卡罗交叉验证的平均准确性分别为 69%(95%CI,68-70)和 72%(95%CI,71-72)。两种方法在蒙特卡罗交叉验证中识别的 1000 个分类器中,miR-200b*、miR-30c-1*、miR-510、miR-630、miR-657 和 miR-146b-3p 以及 miR-124*、miR-585 和 miR-708 分别代表最常见的 miRNA。基于它们在 77 个病例和两个病例组中的表达模式的稳定性,miR-488、miR-503 和 miR-647 被确定为未来研究的潜在参考 miRNA。我们的发现加强了为更好地预测 I 期 NSCLC 而对 miRNA 表达模式进行分析的努力。