Suppr超能文献

非小细胞肺癌中的分子放射生物学:预后及预测反应因素

Molecular Radiobiology in Non-Small Cell Lung Cancer: Prognostic and Predictive Response Factors.

作者信息

Peinado-Serrano Javier, Carnero Amancio

机构信息

Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain.

CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain.

出版信息

Cancers (Basel). 2022 Apr 28;14(9):2202. doi: 10.3390/cancers14092202.

Abstract

Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide, generating huge economic and social impacts that have not slowed in recent years. Oncological treatment for this neoplasm usually includes surgery, chemotherapy, treatments on molecular targets and ionizing radiation. The prognosis in terms of overall survival (OS) and the different therapeutic responses between patients can be explained, to a large extent, by the existence of widely heterogeneous molecular profiles. The identification of prognostic and predictive gene signatures of response to cancer treatment, could help in making therapeutic decisions in patients affected by NSCLC. Given the published scientific evidence, we believe that the search for prognostic and/or predictive gene signatures of response to radiotherapy treatment can significantly help clinical decision-making. These signatures may condition the fractions, the total dose to be administered and/or the combination of systemic treatments in conjunction with radiation. The ultimate goal is to achieve better clinical results, minimizing the adverse effects associated with current cancer therapies.

摘要

非小细胞肺癌(NSCLC)是全球癌症相关死亡的主要原因,产生了巨大的经济和社会影响,近年来这种影响并未减缓。针对这种肿瘤的肿瘤治疗通常包括手术、化疗、分子靶向治疗和电离辐射。总体生存率(OS)方面的预后以及患者之间不同的治疗反应,在很大程度上可以通过广泛异质的分子特征来解释。识别癌症治疗反应的预后和预测基因特征,有助于为受NSCLC影响的患者做出治疗决策。鉴于已发表的科学证据,我们认为寻找放疗治疗反应的预后和/或预测基因特征可以显著帮助临床决策。这些特征可能会决定分割剂量、要给予的总剂量和/或与放疗联合的全身治疗组合。最终目标是取得更好的临床效果,将与当前癌症治疗相关的不良反应降至最低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e89/9101029/44f5496bcf57/cancers-14-02202-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验