Suppr超能文献

通过纳米技术手段实现氧化还原蛋白的电接触。

Electrical contacting of redox proteins by nanotechnological means.

作者信息

Willner Bilha, Katz Eugenii, Willner Itamar

机构信息

Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

出版信息

Curr Opin Biotechnol. 2006 Dec;17(6):589-96. doi: 10.1016/j.copbio.2006.10.008. Epub 2006 Nov 3.

Abstract

Redox enzymes in bioelectronic devices usually lack direct electrical contact with electrodes, owing to the spatial separation of their redox centers from the conductive surfaces by the protein shells. The reconstitution of apo-enzymes on cofactor-functionalized nanostructures associated with electrodes provides a means to align the biocatalysts on the conductive surface and to electrically contact redox enzymes with electrodes. The reconstitution of apo-enzymes on cofactor-functionalized gold nanoparticles or carbon nanotubes has led to effective electrical communication between the redox proteins and the electrodes. Alternatively, the reconstitution of redox enzymes on molecular wires that enable electron tunneling or dynamic charge shuttling represent supramolecular biocatalytic nanostructures exhibiting electrical contact. The bioelectrocatalytic activities of the electrically wired reconstituted enzymes on electrodes have allowed the development of amperometric biosensors and biofuel cell elements.

摘要

生物电子器件中的氧化还原酶通常与电极缺乏直接电接触,这是因为其氧化还原中心通过蛋白质外壳与导电表面在空间上分离。将脱辅基酶重构于与电极相关的辅因子功能化纳米结构上,提供了一种使生物催化剂排列在导电表面并使氧化还原酶与电极进行电接触的方法。将脱辅基酶重构于辅因子功能化的金纳米颗粒或碳纳米管上已实现了氧化还原蛋白与电极之间的有效电通信。另外,将氧化还原酶重构于能够实现电子隧穿或动态电荷穿梭的分子导线上,形成了具有电接触的超分子生物催化纳米结构。电极上经电连接重构的酶的生物电催化活性推动了电流型生物传感器和生物燃料电池元件的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验