Xiao Yi, Patolsky Fernando, Katz Eugenii, Hainfeld James F, Willner Itamar
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Science. 2003 Mar 21;299(5614):1877-81. doi: 10.1126/science.1080664.
The reconstitution of an apo-flavoenzyme, apo-glucose oxidase, on a 1.4-nanometer gold nanocrystal functionalized with the cofactor flavin adenine dinucleotide and integrated into a conductive film yields a bioelectrocatalytic system with exceptional electrical contact with the electrode support. The electron transfer turnover rate of the reconstituted bioelectrocatalyst is approximately 5000 per second, compared with the rate at which molecular oxygen, the natural cosubstrate of the enzyme, accepts electrons (approximately 700 per second). The gold nanoparticle acts as an electron relay or "electrical nanoplug" for the alignment of the enzyme on the conductive support and for the electrical wiring of its redox-active center.
将脱辅基黄素酶(脱辅基葡萄糖氧化酶)在辅因子黄素腺嘌呤二核苷酸功能化的1.4纳米金纳米晶体上进行重组,并整合到导电膜中,可产生一种与电极载体具有优异电接触的生物电催化系统。重组生物电催化剂的电子转移周转速率约为每秒5000次,相比之下,该酶的天然共底物分子氧接受电子的速率约为每秒700次。金纳米颗粒作为电子中继或“电纳米栓”,用于使酶在导电载体上排列,并连接其氧化还原活性中心的电路。