Suppr超能文献

因果关系的统计模型:它们提供了哪些推理杠杆作用?

Statistical models for causation: what inferential leverage do they provide?

作者信息

Freedman David A

机构信息

University of California, Berkeley, USA.

出版信息

Eval Rev. 2006 Dec;30(6):691-713. doi: 10.1177/0193841X06293771.

Abstract

Experiments offer more reliable evidence on causation than observational studies, which is not to gainsay the contribution to knowledge from observation. Experiments should be analyzed as experiments, not as observational studies. A simple comparison of rates might be just the right tool, with little value added by "sophisticated" models. This article discusses current models for causation, as applied to experimental and observational data. The intention-to-treat principle and the effect of treatment on the treated will also be discussed. Flaws in per-protocol and treatment-received estimates will be demonstrated.

摘要

与观察性研究相比,实验能提供关于因果关系更可靠的证据,这并不是要否定观察对知识的贡献。实验应作为实验来分析,而不是作为观察性研究。简单的率比较可能就是合适的工具,“复杂”模型几乎没有增加价值。本文讨论了应用于实验和观察性数据的当前因果关系模型。还将讨论意向性分析原则以及治疗对接受治疗者的影响。将展示符合方案分析和接受治疗情况估计中的缺陷。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验