Suppr超能文献

A comparison of mixed-effects quantile stratification propensity adjustment strategies for longitudinal treatment effectiveness analyses of continuous outcomes.

作者信息

Leon Andrew C, Hedeker Donald

机构信息

Department of Psychiatry, Cornell University, New York, NY, USA.

出版信息

Stat Med. 2007 Jun 15;26(13):2650-65. doi: 10.1002/sim.2732.

Abstract

The propensity adjustment is used to reduce bias in treatment effectiveness estimates from observational data. We show here that a mixed-effects implementation of the propensity adjustment can reduce bias in longitudinal studies of non-equivalent comparison groups. The strategy examined here involves two stages. Initially, a mixed-effects ordinal logistic regression model of propensity for treatment intensity includes variables that differentiate subjects who receive various doses of time-varying treatments. Second, a mixed-effects linear regression model compares the effectiveness of those ordinal doses on a continuous outcome over time. Here, a simulation study compares bias reduction that is achieved by implementing this propensity adjustment through various forms of stratification. The simulations demonstrate that bias decreased monotonically as the number of quantiles used for stratification increased from two to five. This was particularly pronounced with stronger effects of the confounding variables. The quartile and quintile strategies typically removed in excess of 80-90 per cent of the bias detected in unadjusted models; whereas a median-split approach removed from 20 to 45 per cent of bias. The approach is illustrated in an evaluation of the effectiveness of somatic treatments for major depression in a longitudinal, observational study of affective disorders.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验