Suppr超能文献

采用混合效应倾向得分调整减少纵向有序剂量有效性分析中的偏倚。

Bias reduction in effectiveness analyses of longitudinal ordinal doses with a mixed-effects propensity adjustment.

作者信息

Leon Andrew C, Hedeker Donald, Teres Jedediah J

机构信息

Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10021, USA.

出版信息

Stat Med. 2007 Jan 15;26(1):110-23. doi: 10.1002/sim.2458.

Abstract

A mixed-effects propensity adjustment is described that can reduce bias in longitudinal studies involving non-equivalent comparison groups. There are two stages in this data analytic strategy. First, a model of propensity for treatment intensity examines variables that distinguish among subjects who receive various ordered doses of treatment across time using mixed-effects ordinal logistic regression. Second, the effectiveness model examines multiple times until recurrence to compare the ordered doses using a mixed-effects grouped-time survival model. Effectiveness analyses are initially stratified by propensity quintile. Then the quintile-specific results are pooled, assuming that there is not a propensity x treatment interaction. A Monte Carlo simulation study compares bias reduction in fully specified propensity model relative to misspecified models. In addition, type I error rate and statistical power are examined. The approach is illustrated by applying it to a longitudinal, observational study of maintenance treatment of major depression.

摘要

本文描述了一种混合效应倾向调整方法,该方法可减少涉及非等效比较组的纵向研究中的偏差。这种数据分析策略有两个阶段。首先,治疗强度倾向模型使用混合效应有序逻辑回归来检验那些能够区分在不同时间接受不同有序剂量治疗的受试者的变量。其次,有效性模型多次检验直至复发,使用混合效应分组时间生存模型来比较有序剂量。有效性分析最初按倾向五分位数进行分层。然后,假设不存在倾向×治疗交互作用,将五分位数特定的结果合并。一项蒙特卡罗模拟研究比较了完全指定的倾向模型与错误指定模型在偏差减少方面的情况。此外,还检验了I型错误率和统计功效。通过将该方法应用于一项关于重度抑郁症维持治疗的纵向观察性研究来说明这一方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验