Suppr超能文献

用于全基因组关联研究及人类遗传学其他研究的数据模拟软件。

Data simulation software for whole-genome association and other studies in human genetics.

作者信息

Dudek Scott M, Motsinger Alison A, Velez Digna R, Williams Scott M, Ritchie Marylyn D

机构信息

Center for Human Genetics Research, Vanderbilt University, 519 Light Hall, Nashville, TN 37232, USA.

出版信息

Pac Symp Biocomput. 2006:499-510.

Abstract

Genome-wide association studies have become a reality in the study of the genetics of complex disease. This technology provides a wealth of genomic information on patient samples, from which we hope to learn novel biology and detect important genetic and environmental factors for disease processes. Because strategies for analyzing these data have not kept pace with the laboratory methods that generate the data it is unlikely that these advances will immediately lead to an improved understanding of the genetic contribution to common human disease and drug response. Currently, no single analytical method will allow us to extract all information from a whole-genome association study. Thus, many novel methods are being proposed and developed. It will be vital for the success of these new methods, to have the ability to simulate datasets consisting of polymorphisms throughout the genome with realistic linkage disequilibrium patterns. Within these datasets, we can embed genetic models of disease whereby we can evaluate the ability of novel methods to detect these simulated effects. This paper describes a new software package, genomeSIM, for the simulation of large-scale genomic data in population based case-control samples. It allows for single SNP, as well as gene-gene interaction models to be associated with disease risk. We describe the algorithm and demonstrate its utility for future genetic studies of whole-genome association.

摘要

全基因组关联研究已成为复杂疾病遗传学研究中的现实手段。这项技术为患者样本提供了丰富的基因组信息,我们希望从中了解新的生物学知识,并检测出疾病发生过程中重要的遗传和环境因素。由于分析这些数据的策略未能跟上产生数据的实验室方法的发展步伐,这些进展不太可能立即增进我们对常见人类疾病的遗传因素及药物反应的理解。目前,没有一种单一的分析方法能让我们从全基因组关联研究中提取所有信息。因此,许多新方法正在被提出和开发。对于这些新方法的成功而言,具备模拟包含全基因组多态性且具有现实连锁不平衡模式的数据集的能力至关重要。在这些数据集中,我们可以嵌入疾病的遗传模型,借此评估新方法检测这些模拟效应的能力。本文介绍了一个新的软件包genomeSIM,用于在基于人群的病例对照样本中模拟大规模基因组数据。它允许单个单核苷酸多态性(SNP)以及基因-基因相互作用模型与疾病风险相关联。我们描述了该算法,并展示了其在全基因组关联未来遗传研究中的效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验