Igamberdiev Abir U
Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
Biosystems. 2007 Sep-Oct;90(2):340-9. doi: 10.1016/j.biosystems.2006.09.037. Epub 2006 Sep 24.
The computational process is based on the activity linking mathematical equations to a materialized physical world. It consumes energy which lower limit is defined by the set of Planck's values, i.e. by the physical structure of the Universe. We discuss computability from the quantum measurement framework. Effective quantum computation is possible via the maintenance of a long-living cold decoherence-free internal state, which is achieved by applying error-correction commands to it and by screening it from thermal fluctuations. The quantum Zeno effect enables coherent superpositions and entanglement to persist for macroscopic time intervals. Living systems maintain coherent states via realization of their own computing programs aiming them to survive and develop, while their non-computable behavior corresponds to a generative power that arises beyond combinatorial capabilities of the system. Emergence of life brings in the Universe a creative activity that overcomes the limits of computability.
计算过程基于将数学方程与物质化物理世界相联系的活动。它消耗能量,其下限由普朗克值集定义,即由宇宙的物理结构定义。我们从量子测量框架讨论可计算性。通过维持一个长寿命的无热退相干内部状态可以实现有效的量子计算,这是通过对其应用纠错命令并使其免受热涨落影响来实现的。量子芝诺效应使相干叠加和纠缠能够在宏观时间间隔内持续存在。生命系统通过实现自身旨在生存和发展的计算程序来维持相干态,而它们的不可计算行为对应于超出系统组合能力而产生的生成力。生命的出现给宇宙带来了一种克服可计算性限制的创造性活动。