Maiorino Matilde, Ursini Fulvio, Bosello Valentina, Toppo Stefano, Tosatto Silvio C E, Mauri Pierluigi, Becker Katja, Roveri Antonella, Bulato Cristiana, Benazzi Louise, De Palma Antonella, Flohé Leopold
Department of Biological Chemistry, University of Padova, I-35121 Padova, Italy.
J Mol Biol. 2007 Jan 26;365(4):1033-46. doi: 10.1016/j.jmb.2006.10.033. Epub 2006 Oct 13.
Some members of the glutathione peroxidase (GPx) family have been reported to accept thioredoxin as reducing substrate. However, the selenocysteine-containing ones oxidise thioredoxin (Trx), if at all, at extremely slow rates. In contrast, the Cys homolog of Drosophila melanogaster exhibits a clear preference for Trx, the net forward rate constant, k'(+2), for reduction by Trx being 1.5x10(6) M(-1) s(-1), but only 5.4 M(-1) s(-1) for glutathione. Like other CysGPxs with thioredoxin peroxidase activity, Drosophila melanogaster (Dm)GPx oxidized by H(2)O(2) contained an intra-molecular disulfide bridge between the active-site cysteine (C45; C(P)) and C91. Site-directed mutagenesis of C91 in DmGPx abrogated Trx peroxidase activity, but increased the rate constant for glutathione by two orders of magnitude. In contrast, a replacement of C74 by Ser or Ala only marginally affected activity and specificity of DmGPx. Furthermore, LC-MS/MS analysis of oxidized DmGPx exposed to a reduced Trx C35S mutant yielded a dead-end intermediate containing a disulfide between Trx C32 and DmGPx C91. Thus, the catalytic mechanism of DmGPx, unlike that of selenocysteine (Sec)GPxs, involves formation of an internal disulfide that is pivotal to the interaction with Trx. Hereby C91, like the analogous second cysteine in 2-cysteine peroxiredoxins, adopts the role of a "resolving" cysteine (C(R)). Molecular modeling and homology considerations based on 450 GPxs suggest peculiar features to determine Trx specificity: (i) a non-aligned second Cys within the fourth helix that acts as C(R); (ii) deletions of the subunit interfaces typical of tetrameric GPxs leading to flexibility of the C(R)-containing loop. Based of these characteristics, most of the non-mammalian CysGPxs, in functional terms, are thioredoxin peroxidases.
据报道,谷胱甘肽过氧化物酶(GPx)家族的一些成员可将硫氧还蛋白作为还原底物。然而,含硒代半胱氨酸的成员即使能氧化硫氧还蛋白(Trx),其速率也极其缓慢。相比之下,果蝇的半胱氨酸同源物对Trx表现出明显的偏好,Trx还原的净正向速率常数k'(+2)为1.5×10(6) M(-1) s(-1),而谷胱甘肽的该常数仅为5.4 M(-1) s(-1)。与其他具有硫氧还蛋白过氧化物酶活性的半胱氨酸GPx一样,被H(2)O(2)氧化的果蝇(Dm)GPx在活性位点半胱氨酸(C45;C(P))和C91之间含有分子内二硫键。对DmGPx中C91进行定点诱变消除了Trx过氧化物酶活性,但使谷胱甘肽的速率常数提高了两个数量级。相比之下,用丝氨酸或丙氨酸取代C74对DmGPx的活性和特异性影响很小。此外,对暴露于还原型Trx C35S突变体的氧化型DmGPx进行LC-MS/MS分析,得到了一种死端中间体,其在Trx C32和DmGPx C91之间含有二硫键。因此,与硒代半胱氨酸(Sec)GPx不同,DmGPx的催化机制涉及形成对与Trx相互作用至关重要的内部二硫键。据此,C91与2-半胱氨酸过氧化物酶中类似的第二个半胱氨酸一样,充当“拆分”半胱氨酸(C(R))的角色。基于450种GPx的分子建模和同源性考虑表明,决定Trx特异性的独特特征为:(i)第四螺旋内未对齐的第二个半胱氨酸充当C(R);(ii)典型的四聚体GPx亚基界面缺失,导致含C(R)的环具有灵活性。基于这些特征,从功能角度来看,大多数非哺乳动物的半胱氨酸GPx都是硫氧还蛋白过氧化物酶。