Suppr超能文献

心室力学三维有限元模型与体循环和肺循环集总系统模型的耦合。

Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation.

作者信息

Kerckhoffs Roy C P, Neal Maxwell L, Gu Quan, Bassingthwaighte James B, Omens Jeff H, McCulloch Andrew D

机构信息

Department of Bioengineering, The Whitaker Institute for Biomedical Engineering, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA.

出版信息

Ann Biomed Eng. 2007 Jan;35(1):1-18. doi: 10.1007/s10439-006-9212-7. Epub 2006 Nov 8.

Abstract

In this study we present a novel, robust method to couple finite element (FE) models of cardiac mechanics to systems models of the circulation (CIRC), independent of cardiac phase. For each time step through a cardiac cycle, left and right ventricular pressures were calculated using ventricular compliances from the FE and CIRC models. These pressures served as boundary conditions in the FE and CIRC models. In succeeding steps, pressures were updated to minimize cavity volume error (FE minus CIRC volume) using Newton iterations. Coupling was achieved when a predefined criterion for the volume error was satisfied. Initial conditions for the multi-scale model were obtained by replacing the FE model with a varying elastance model, which takes into account direct ventricular interactions. Applying the coupling, a novel multi-scale model of the canine cardiovascular system was developed. Global hemodynamics and regional mechanics were calculated for multiple beats in two separate simulations with a left ventricular ischemic region and pulmonary artery constriction, respectively. After the interventions, global hemodynamics changed due to direct and indirect ventricular interactions, in agreement with previously published experimental results. The coupling method allows for simulations of multiple cardiac cycles for normal and pathophysiology, encompassing levels from cell to system.

摘要

在本研究中,我们提出了一种新颖、稳健的方法,可将心脏力学的有限元(FE)模型与循环系统模型(CIRC)相耦合,且与心动周期无关。在心动周期的每个时间步,利用FE模型和CIRC模型中的心室顺应性计算左、右心室压力。这些压力作为FE模型和CIRC模型的边界条件。在后续步骤中,使用牛顿迭代法更新压力,以最小化腔室容积误差(FE容积减去CIRC容积)。当满足预定义的容积误差标准时,实现耦合。通过用可变弹性模型替代FE模型来获得多尺度模型的初始条件,该模型考虑了心室之间的直接相互作用。应用这种耦合方法,开发了一种新型的犬心血管系统多尺度模型。分别在两个单独的模拟中,针对左心室缺血区域和肺动脉狭窄的多个心动周期计算整体血流动力学和局部力学。干预后,由于心室之间的直接和间接相互作用,整体血流动力学发生了变化,这与先前发表的实验结果一致。该耦合方法允许对正常和病理生理学状态下的多个心动周期进行模拟,涵盖从细胞到系统的各个层面。

相似文献

2
On coupling a lumped parameter heart model and a three-dimensional finite element aorta model.
Ann Biomed Eng. 2009 Nov;37(11):2153-69. doi: 10.1007/s10439-009-9760-8. Epub 2009 Jul 17.
3
A right ventricular pressure waveform based pulse contour cardiac output algorithm in canines.
Cardiovasc Eng. 2006 Sep;6(3):83-92. doi: 10.1007/s10558-006-9014-4.
4
Computer simulated modeling of healthy and diseased right ventricular and pulmonary circulation.
J Clin Monit Comput. 2018 Dec;32(6):1015-1024. doi: 10.1007/s10877-018-0099-2. Epub 2018 Jan 12.
5
A new multi-scale simulation model of the circulation: from cells to system.
Philos Trans A Math Phys Eng Sci. 2006 Jun 15;364(1843):1483-500. doi: 10.1098/rsta.2006.1782.
7
A closed-loop model of the canine cardiovascular system that includes ventricular interaction.
Comput Biomed Res. 2000 Aug;33(4):260-95. doi: 10.1006/cbmr.2000.1543.
9
Pulmonary circulation at exercise.
Compr Physiol. 2012 Jan;2(1):711-41. doi: 10.1002/cphy.c100091.
10
Computer simulation of the mechanically-assisted failing canine circulation.
Ann Biomed Eng. 1990;18(3):263-83. doi: 10.1007/BF02368442.

引用本文的文献

1
Building Digital Twins for Cardiovascular Health: From Principles to Clinical Impact.
J Am Heart Assoc. 2024 Oct;13(19):e031981. doi: 10.1161/JAHA.123.031981. Epub 2024 Aug 1.
2
A Modular Framework for Implicit 3D-0D Coupling in Cardiac Mechanics.
Comput Methods Appl Mech Eng. 2024 Mar 1;421. doi: 10.1016/j.cma.2024.116764. Epub 2024 Jan 19.
3
Variational autoencoder-based neural electrocardiogram synthesis trained by FEM-based heart simulator.
Cardiovasc Digit Health J. 2023 Dec 22;5(1):19-28. doi: 10.1016/j.cvdhj.2023.12.002. eCollection 2024 Feb.
4
Review of cardiac-coronary interaction and insights from mathematical modeling.
WIREs Mech Dis. 2024 May-Jun;16(3):e1642. doi: 10.1002/wsbm.1642. Epub 2024 Feb 5.
5
Understanding heterogeneous mechanisms of heart failure with preserved ejection fraction through cardiorenal mathematical modeling.
PLoS Comput Biol. 2023 Nov 13;19(11):e1011598. doi: 10.1371/journal.pcbi.1011598. eCollection 2023 Nov.
6
Simulation of coronary capillary transit time based on full vascular model of the heart.
Comput Methods Programs Biomed. 2024 Jan;243:107908. doi: 10.1016/j.cmpb.2023.107908. Epub 2023 Oct 31.
8
An accurate, robust, and efficient finite element framework with applications to anisotropic, nearly and fully incompressible elasticity.
Comput Methods Appl Mech Eng. 2022 Mar 31;394:114887. doi: 10.1016/j.cma.2022.114887. eCollection 2022 May 1.
9
Embedded Computational Heart Model for External Ventricular Assist Device Investigations.
Cardiovasc Eng Technol. 2022 Oct;13(5):764-782. doi: 10.1007/s13239-022-00610-w. Epub 2022 Mar 15.
10
A computationally efficient physiologically comprehensive 3D-0D closed-loop model of the heart and circulation.
Comput Methods Appl Mech Eng. 2021 Aug 18;386:114092. doi: 10.1016/j.cma.2021.114092. eCollection 2021 Dec 1.

本文引用的文献

1
Subject-specific model estimation of cardiac output and blood volume during hemorrhage.
Cardiovasc Eng. 2007 Sep;7(3):97-120. doi: 10.1007/s10558-007-9035-7.
2
Compression induced by RV pressure overload decreases regional coronary blood flow in anesthetized dogs.
Am J Physiol Heart Circ Physiol. 2006 Jun;290(6):H2432-8. doi: 10.1152/ajpheart.01140.2005. Epub 2006 Jan 20.
3
Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application.
Am J Physiol Heart Circ Physiol. 2006 Jul;291(1):H403-12. doi: 10.1152/ajpheart.01240.2005. Epub 2006 Jan 20.
4
Electromechanics of paced left ventricle simulated by straightforward mathematical model: comparison with experiments.
Am J Physiol Heart Circ Physiol. 2005 Nov;289(5):H1889-97. doi: 10.1152/ajpheart.00340.2005. Epub 2005 Jun 17.
5
Cardiac vulnerability to electric shocks during phase 1A of acute global ischemia.
Heart Rhythm. 2004 Dec;1(6):695-703. doi: 10.1016/j.hrthm.2004.08.018.
6
MRI-based finite-element analysis of left ventricular aneurysm.
Am J Physiol Heart Circ Physiol. 2005 Aug;289(2):H692-700. doi: 10.1152/ajpheart.01226.2004. Epub 2005 Mar 18.
8
Mechanistic systems models of cell signaling networks: a case study of myocyte adrenergic regulation.
Prog Biophys Mol Biol. 2004 Jun-Jul;85(2-3):261-78. doi: 10.1016/j.pbiomolbio.2004.01.005.
10
Pericardium modulates left and right ventricular stroke volumes to compensate for sudden changes in atrial volume.
Am J Physiol Heart Circ Physiol. 2003 Jun;284(6):H2247-54. doi: 10.1152/ajpheart.00613.2002. Epub 2003 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验