Brown Aaron L, Salvador Matteo, Shi Lei, Pfaller Martin R, Hu Zinan, Harold Kaitlin E, Hsiai Tzung, Vedula Vijay, Marsden Alison L
Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
Stanford Cardiovascular Institute, Stanford, CA, USA.
Comput Methods Appl Mech Eng. 2024 Mar 1;421. doi: 10.1016/j.cma.2024.116764. Epub 2024 Jan 19.
In numerical simulations of cardiac mechanics, coupling the heart to a model of the circulatory system is essential for capturing physiological cardiac behavior. A popular and efficient technique is to use an electrical circuit analogy, known as a lumped parameter network or zero-dimensional (0D) fluid model, to represent blood flow throughout the cardiovascular system. Due to the strong interaction between the heart and the blood circulation, developing accurate and efficient coupling methods remains an active area of research. In this work, we present a modular framework for implicitly coupling three-dimensional (3D) finite element simulations of cardiac mechanics to 0D models of blood circulation. The framework is modular in that the circulation model can be modified independently of the 3D finite element solver, and vice versa. The numerical scheme builds upon a previous work that combines 3D blood flow models with 0D circulation models (3D fluid - 0D fluid). Here, we extend it to couple 3D cardiac tissue mechanics models with 0D circulation models (3D structure - 0D fluid), showing that both mathematical problems can be solved within a unified coupling scheme. The effectiveness, temporal convergence, and computational cost of the algorithm are assessed through multiple examples relevant to the cardiovascular modeling community. Importantly, in an idealized left ventricle example, we show that the coupled model yields physiological pressure-volume loops and naturally recapitulates the isovolumic contraction and relaxation phases of the cardiac cycle without any additional numerical techniques. Furthermore, we provide a new derivation of the scheme inspired by the Approximate Newton Method of Chan (1985), explaining how the proposed numerical scheme combines the stability of monolithic approaches with the modularity and flexibility of partitioned approaches.
在心脏力学的数值模拟中,将心脏与循环系统模型相耦合对于捕捉生理性心脏行为至关重要。一种常用且高效的技术是使用电路类比,即集总参数网络或零维(0D)流体模型,来表示整个心血管系统中的血流。由于心脏与血液循环之间存在强烈相互作用,开发准确且高效的耦合方法仍是一个活跃的研究领域。在这项工作中,我们提出了一个模块化框架,用于将心脏力学的三维(3D)有限元模拟与血液循环的0D模型进行隐式耦合。该框架具有模块化特点,即循环模型可以独立于3D有限元求解器进行修改,反之亦然。数值方案基于先前将3D血流模型与0D循环模型相结合(3D流体 - 0D流体)的工作。在此,我们将其扩展为将3D心脏组织力学模型与0D循环模型相耦合(3D结构 - 0D流体),表明这两个数学问题都可以在一个统一的耦合方案中得到解决。通过与心血管建模领域相关的多个示例评估了该算法的有效性、时间收敛性和计算成本。重要的是,在一个理想化的左心室示例中,我们表明耦合模型能够产生生理性压力 - 容积环,并且自然地重现心动周期的等容收缩和舒张阶段,无需任何额外的数值技术。此外,我们提供了一种受Chan(1985)的近似牛顿法启发的方案新推导,解释了所提出的数值方案如何将整体方法的稳定性与分区方法的模块化和灵活性相结合。