Suppr超能文献

构建心血管健康的数字孪生体:从原理到临床影响。

Building Digital Twins for Cardiovascular Health: From Principles to Clinical Impact.

机构信息

Laboratory for Information & Decision Systems (LIDS) Massachusetts Institute of Technology Cambridge MA USA.

Department of Electrical and Computer Engineering Texas A&M University College Station TX USA.

出版信息

J Am Heart Assoc. 2024 Oct;13(19):e031981. doi: 10.1161/JAHA.123.031981. Epub 2024 Aug 1.

Abstract

The past several decades have seen rapid advances in diagnosis and treatment of cardiovascular diseases and stroke, enabled by technological breakthroughs in imaging, genomics, and physiological monitoring, coupled with therapeutic interventions. We now face the challenge of how to (1) rapidly process large, complex multimodal and multiscale medical measurements; (2) map all available data streams to the trajectories of disease states over the patient's lifetime; and (3) apply this information for optimal clinical interventions and outcomes. Here we review new advances that may address these challenges using digital twin technology to fulfill the promise of personalized cardiovascular medical practice. Rooted in engineering mechanics and manufacturing, the digital twin is a virtual representation engineered to model and simulate its physical counterpart. Recent breakthroughs in scientific computation, artificial intelligence, and sensor technology have enabled rapid bidirectional interactions between the virtual-physical counterparts with measurements of the physical twin that inform and improve its virtual twin, which in turn provide updated virtual projections of disease trajectories and anticipated clinical outcomes. Verification, validation, and uncertainty quantification builds confidence and trust by clinicians and patients in the digital twin and establishes boundaries for the use of simulations in cardiovascular medicine. Mechanistic physiological models form the fundamental building blocks of the personalized digital twin that continuously forecast optimal management of cardiovascular health using individualized data streams. We present exemplars from the existing body of literature pertaining to mechanistic model development for cardiovascular dynamics and summarize existing technical challenges and opportunities pertaining to the foundation of a digital twin.

摘要

在过去的几十年中,得益于成像、基因组学和生理监测技术的突破,以及治疗干预措施的结合,心血管疾病和中风的诊断和治疗取得了快速进展。我们现在面临着如何(1)快速处理大型、复杂的多模态和多尺度医学测量数据;(2)将所有可用数据流映射到患者一生中疾病状态的轨迹;(3)应用这些信息进行最佳的临床干预和结果。在这里,我们回顾了使用数字孪生技术可能解决这些挑战的新进展,以实现个性化心血管医疗实践的承诺。数字孪生技术源于工程力学和制造业,是一种经过工程设计的虚拟表示,用于对物理对应物进行建模和模拟。最近,在科学计算、人工智能和传感器技术方面的突破,使得虚拟-物理对应物之间能够快速双向交互,通过对物理孪生体的测量来为其提供信息并改进虚拟孪生体,进而提供疾病轨迹和预期临床结果的更新虚拟预测。验证、确认和不确定性量化通过临床医生和患者对数字孪生的信任来建立信心,并为心血管医学中模拟的使用设定了界限。基于生理的机械模型构成了个性化数字孪生的基本构建块,它使用个体化数据流持续预测心血管健康的最佳管理。我们展示了与心血管动力学的机械模型开发相关的现有文献中的范例,并总结了与数字孪生基础相关的现有技术挑战和机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9db/11681439/6020f17eaf1a/JAH3-13-e031981-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验