Suppr超能文献

利用导电聚吡咯优化神经营养因子的掺入和释放。

Optimising the incorporation and release of a neurotrophic factor using conducting polypyrrole.

作者信息

Thompson Brianna C, Moulton Simon E, Ding Jie, Richardson Rachael, Cameron Adrian, O'Leary Stephen, Wallace Gordon G, Clark Graeme M

机构信息

ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.

出版信息

J Control Release. 2006 Dec 1;116(3):285-94. doi: 10.1016/j.jconrel.2006.09.004. Epub 2006 Sep 29.

Abstract

In this study, a neurotrophin delivery system based on an inherently conducting polymer (ICP) has been developed. Direct incorporation of neurotrophin-3 (NT-3) was investigated and controlled release was tested under various electrochemical conditions. The loading capacity and amount of NT-3 released from the polymer was determined using (125)I-labelled NT-3. Electrochemical stimulation of polypyrrole by pulsed voltage, pulsed current or cyclic voltammetry promoted the release of NT-3 at a greater rate than natural diffusion of NT-3. NT-3 was released from polypyrrole as an initial burst in the first 24 h followed by prolonged release over a subsequent 6 days of sampling. The amount of NT-3 incorporated into the polymer could be controlled by varying the polymerisation time, with longer growth periods incorporating more NT-3. The NT-3 release results indicated that the polymers grown for longer released a lower percentage of the incorporated NT-3 compared to the polymers grown for shorter times. Polymer-based neurotrophin delivery systems have the potential to be incorporated into future treatments for nerve injuries to prevent nerve degradation and promote nerve protection.

摘要

在本研究中,已开发出一种基于本征导电聚合物(ICP)的神经营养因子递送系统。研究了神经营养因子-3(NT-3)的直接掺入情况,并在各种电化学条件下测试了其控释性能。使用(125)I标记的NT-3测定了聚合物中NT-3的负载量和释放量。通过脉冲电压、脉冲电流或循环伏安法对聚吡咯进行电化学刺激,促进NT-3的释放速率高于NT-3的自然扩散速率。NT-3从聚吡咯中释放出来,在最初的24小时内出现初始爆发,随后在接下来的6天采样期内持续释放。通过改变聚合时间可以控制掺入聚合物中的NT-3量,生长时间越长,掺入的NT-3越多。NT-3释放结果表明,与生长时间较短的聚合物相比,生长时间较长的聚合物释放的掺入NT-3的百分比更低。基于聚合物的神经营养因子递送系统有可能被纳入未来神经损伤治疗中,以防止神经退化并促进神经保护。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验