Suppr超能文献

用于电刺激辅助组织工程的导电聚合物水凝胶的3D打印

3D Printing of Conducting Polymer Hydrogels for Electrostimulation-Assisted Tissue Engineering.

作者信息

Tran Chien Minh, Yue Zhilian, Qin Chunyan, Imani Kusuma B C, Dottori Mirella, Forster Robert J, Wallace Gordon G

机构信息

Intelligent Polymer Research Institute, Faculty of Engineering and Information Science, University of Wollongong, Innovation Campus, North Wollongong, NSW, 2500, Australia.

Department of Robotics, Ritsumeikan University, Kusatsu, 525-8577, Japan.

出版信息

Adv Mater. 2025 Sep;37(36):e2507779. doi: 10.1002/adma.202507779. Epub 2025 Jul 26.

Abstract

Electrostimulation (ES) is at the cutting edge of contemporary medicine, effectively promoting tissue regeneration and wound healing by applying small electrical cues to stimulate specific cellular responses. The 3D printing of electronically conducting hydrogels (CHs) offers a transformative strategy for developing ES platforms. These hydrogels integrate conformal, customizable geometries, mechanical compliance, adequate electrical conductivity, and biocompatibility, enabling seamless interaction with native tissues. Nanosized inherently conducting polymers (ICPs) are promising conductive ink constituents for 3D printing, owing to their straightforward preparation, electrical conductivity, and printability. However, 3D printing of ICP-based CHs faces several challenges. Controlling the tendency of ICPs to aggregate and achieving the rheological properties required by specific 3D printing modalities are vital for achieving uniform and precise printed structures. Furthermore, post-printing solidification of ICPs often uses harsh curing conditions, e.g., high temperatures or toxic solvents, rendering encapsulation of biological components and cells infeasible. This review critically assesses strategies for synthesizing ICP nanostructures, preparing ICP-based CHs, and applicable 3D printing techniques. Progress in tissue regeneration utilizing 3D-printed ICP-based CHs as ES devices is highlighted, along with future perspectives regarding the development of bio-functional ICPs and integrated powering mechanisms for closed-loop ES systems.

摘要

电刺激(ES)处于当代医学的前沿,通过施加微小电信号来刺激特定细胞反应,有效地促进组织再生和伤口愈合。导电水凝胶(CHs)的3D打印为开发电刺激平台提供了一种变革性策略。这些水凝胶兼具贴合、可定制的几何形状、机械顺应性、足够的导电性和生物相容性,能够与天然组织实现无缝交互。纳米级本征导电聚合物(ICPs)因其制备简便、导电性和可打印性,有望成为3D打印的导电油墨成分。然而,基于ICPs的CHs的3D打印面临若干挑战。控制ICPs的聚集趋势并实现特定3D打印方式所需的流变学特性,对于获得均匀且精确的打印结构至关重要。此外,ICPs的打印后固化通常采用苛刻的固化条件,如高温或有毒溶剂,这使得生物成分和细胞的封装变得不可行。本综述批判性地评估了合成ICP纳米结构、制备基于ICP的CHs以及适用的3D打印技术的策略。重点介绍了利用3D打印的基于ICP的CHs作为电刺激装置在组织再生方面的进展,以及关于生物功能ICPs的开发和闭环电刺激系统的集成供电机制的未来展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ef3/12422089/81b14d2546f1/ADMA-37-2507779-g013.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验