Shu Youyi, Klein John P, Zhang Mei-Jie
Department of Biometrics and Reporting, Centocor, Inc., 200 Great Valley Parkway, Mailstop C-4-1, Malvern, PA 19355, USA.
Lifetime Data Anal. 2007 Mar;13(1):91-117. doi: 10.1007/s10985-006-9018-9.
Irreversible illness-death models are used to model disease processes and in cancer studies to model disease recovery. In most applications, a Markov model is assumed for the multistate model. When there are covariates, a Cox (1972, J Roy Stat Soc Ser B 34:187-220) model is used to model the effect of covariates on each transition intensity. Andersen et al. (2000, Stat Med 19:587-599) proposed a Cox semi-Markov model for this problem. In this paper, we study the large sample theory for that model and provide the asymptotic variances of various probabilities of interest. A Monte Carlo study is conducted to investigate the robustness and efficiency of Markov/Semi-Markov estimators. A real data example from the PROVA (1991, Hepatology 14:1016-1024) trial is used to illustrate the theory.
不可逆疾病-死亡模型用于对疾病过程进行建模,在癌症研究中用于对疾病康复进行建模。在大多数应用中,多状态模型假定为马尔可夫模型。当存在协变量时,使用Cox(1972年,《皇家统计学会会刊B辑》34:187 - 220)模型来对协变量对每个转移强度的影响进行建模。安德森等人(2000年,《统计医学》19:587 - 599)针对此问题提出了一种Cox半马尔可夫模型。在本文中,我们研究该模型的大样本理论,并给出各种感兴趣概率的渐近方差。进行了一项蒙特卡罗研究,以调查马尔可夫/半马尔可夫估计量的稳健性和效率。使用来自PROVA(1991年,《肝脏病学》14:1016 - 1024)试验的一个实际数据示例来说明该理论。