Keith Gerald P, Smith Michael A, Crawford J Douglas
Department of Psychology, Centre for Vision Research and Canadian Institute of Health Research Group, York University, 4700 Keele Street, Toronto, Ontario, Canada.
J Comput Neurosci. 2007 Apr;22(2):191-209. doi: 10.1007/s10827-006-0007-5.
The goal of this study was to understand how neural networks solve the 3-D aspects of updating in the double-saccade task, where subjects make sequential saccades to the remembered locations of two targets. We trained a 3-layer, feed-forward neural network, using back-propagation, to calculate the 3-D motor error the second saccade. Network inputs were a 2-D topographic map of the direction of the second target in retinal coordinates, and 3-D vector representations of initial eye orientation and motor error of the first saccade in head-fixed coordinates. The network learned to account for all 3-D aspects of updating. Hidden-layer units (HLUs) showed retinal-coordinate visual receptive fields that were remapped across the first saccade. Two classes of HLUs emerged from the training, one class primarily implementing the linear aspects of updating using vector subtraction, the second class implementing the eye-orientation-dependent, non-linear aspects of updating. These mechanisms interacted at the unit level through gain-field-like input summations, and through the parallel "tweaking" of optimally-tuned HLU contributions to the output that shifted the overall population output vector to the correct second-saccade motor error. These observations may provide clues for the biological implementation of updating.
本研究的目标是了解神经网络如何解决双跳扫视任务中的三维更新问题,在该任务中,受试者对两个目标的记忆位置进行连续扫视。我们使用反向传播算法训练了一个三层前馈神经网络,以计算第二次扫视的三维运动误差。网络输入包括视网膜坐标中第二个目标方向的二维地形图,以及头固定坐标中初始眼位方向和第一次扫视运动误差的三维向量表示。该网络学会了考虑更新的所有三维方面。隐藏层单元(HLU)显示出视网膜坐标视觉感受野,这些感受野在第一次扫视时会重新映射。训练中出现了两类HLU,一类主要通过向量减法实现更新的线性方面,另一类实现与眼位方向相关的更新非线性方面。这些机制在单元层面通过类似增益场的输入求和相互作用,并通过对输出进行最优调整的HLU贡献的并行“微调”,将总体输出向量转移到正确的第二次扫视运动误差。这些观察结果可能为更新的生物学实现提供线索。